-
[
Parasitol Int,
2000]
We have described here the cloning and partial characterization of a cDNA encoding a cuticular antigen of Dirofilaria immitis. A 48-h third-stage larval D. immitis cDNA library was immunoscreened with sera raised in mice against third-stage larval cuticles (mouse anti-L3 cuticle antisera). A strongly immunoreactive clone (L3MC4) was isolated. Sequence analysis of L3MC4 showed that it was a partial length cDNA. The missing 5' end of the clone was amplified by PCR from D. immitis adult female first-strand cDNA using the nematode 22-base splice leader sequence and a L3MC4-specific antisense primer. The composite cDNA sequence comprised 616 bases (nDiL3MC4) encoding a full-length protein of 146 amino acids (DiL3MC4). GenBank analysis showed that DiL3MC4 shared some homology to an unknown C. elegans gene product (31%) at the amino acid level. However, there were no related filarial expressed sequence tags in the current GenBank database. Antibodies to recombinant DiL3MC4 (rDiL3MC4) identified a 19-kDa native antigen in the adults and in the L3 and L4 larval stages of D. immitis. In addition, the antibodies bound to the cortical layers of the L3 cuticle, as revealed by immuno-gold electron microscopy. The native protein was not detected in larval and adult excretory-secretory products. Immunoblot analysis showed that serum from a rabbit that was repeatedly injected with a small number of D. immitis third stage larvae reacted with rDiL3MC4. Thus, DiL3MC4 is a novel cuticular antigen of a filarial parasite.
-
[
Infect Immun,
2001]
Animals can be rendered immune to Ascaris parasites by immunization with infectious-stage larvae. The specific parasite gene products that mediate protective responses in ascariasis are unknown. We have identified a cDNA encoding Ascaris suum 14-kDa antigen (As14) and evaluated the vaccinal effect of the Escherichia coli-expressed recombinant protein (rAs14). GenBank analysis showed that As14 has low similarity at the amino acid level to a Caenorhabditis elegans gene product and to antigens of the filarial nematodes but not to other known proteins. In addition, As14 homologues were found to be expressed in human and dog roundworms. In mice that received intranasal administration of rAs14 coupled with cholera toxin B subunit (rAs14-CTB), there was a 64% reduction of recovery of larvae compared with that in the nontreated group. The vaccinated mice showed a significant increase in the total serum immunoglobulin G (IgG) levels and the mucosal IgA responses. Elevation of the rAs14-specific IgE response was also seen. Measurement of the IgG subclasses showed a higher level of IgG1 and a lower level of IgG2a antibody response in the sera of the immunized mice, suggesting that protection was associated with a type II immune response. As14 is the first protective antigen against A. suum infection to be identified. Our immunization trial results in laboratory animals suggest the possibility of developing a mucosal vaccine for parasitic diseases caused by ascarid nematodes.
-
[
Int J Parasitol,
2002]
Antigens from larval stages of Ascaris suum have been shown to induce protection against challenge infection with infective A. suum eggs. We previously identified several antigens that reacted strongly with serum from pigs inoculated with infective eggs containing L3. In this study, we isolated an antigen with a molecular mass of 37 kDa and a pI of 4.8 (As37) from A. suum infective eggs using two-dimensional electrophoresis, and obtained a full-length cDNA by reverse transcription-polymerase chain reaction using primers designed based on the internal amino acid sequence of As37. The cDNA sequence consisted of 1,540 bp coding for a protein of 321 amino acids with a complex domain organisation. Simple modular architecture research tool (SMART) analysis indicated that As37 contains three immunoglobulin domains, indicating that it is a member of immunoglobulin superfamily (IgSF). A homology search of GenBank showed that As37 has significant similarity to Caenorhabditis elegans DIM-1 protein and has low similarity to part of the multi-repeat Ig domain from nematode twitchin and mammalian skeleton muscle titin, and to members of the IgSF at the amino acid sequence level. Localisation analysis revealed that antibodies to Escherichia coli-expressed recombinant As37 (rAs37) bound to muscle cells and the hypodermis. The antibodies identified a 37 kDa native antigen in human and dog roundworms, suggesting that there are As37 homologues in ascarid nematodes. Sera from mice, rabbits and pigs immunised with A. suum infective eggs reacted with rAs37 in immunoblot analyses. The potential use of rAs37 for protection against A. suum infection is discussed.
-
Kato Y, Sato K, Sato M, Ozono K, Takeda N, Harada A, Miki K, Tsuji A, Mushiake S, Kubo Y, Harada R, Sato T
[
Nature,
2007]
A number of proteins are known to be involved in apical/basolateral transport of proteins in polarized epithelial cells. The small GTP-binding protein Rab8 was thought to regulate basolateral transport in polarized kidney epithelial cells through the AP1B-complex-mediated pathway. However, the role of Rab8 (Rab8A) in cell polarity in vivo remains unknown. Here we show that Rab8 is responsible for the localization of apical proteins in intestinal epithelial cells. We found that apical peptidases and transporters localized to lysosomes in the small intestine of Rab8-deficient mice. Their mislocalization and degradation in lysosomes led to a marked reduction in the absorption rate of nutrients in the small intestine, and ultimately to death. Ultrastructurally, a shortening of apical microvilli, an increased number of enlarged lysosomes, and microvillus inclusions in the enterocytes were also observed. One microvillus inclusion disease patient who shows an identical phenotype to Rab8-deficient mice expresses a reduced amount of RAB8 (RAB8A; NM_005370). Our results demonstrate that Rab8 is necessary for the proper localization of apical proteins and the absorption and digestion of various nutrients in the small intestine.
-
Pennington PR, Heistad RM, Nyarko JNK, Barnes JR, Bolanos MAC, Parsons MP, Knudsen KJ, De Carvalho CE, Leary SC, Mousseau DD, Buttigieg J, Maley JM, Quartey MO
[
Sci Rep,
2021]
The pool of -Amyloid (A) length variants detected in preclinical and clinical Alzheimer disease (AD) samples suggests a diversity of roles for A peptides. We examined how a naturally occurring variant, e.g. A(1-38), interacts with the AD-related variant, A(1-42), and the predominant physiological variant, A(1-40). Atomic force microscopy, Thioflavin T fluorescence, circular dichroism, dynamic light scattering, and surface plasmon resonance reveal that A(1-38) interacts differently with A(1-40) and A(1-42) and, in general, A(1-38) interferes with the conversion of A(1-42) to a -sheet-rich aggregate. Functionally, A(1-38) reverses the negative impact of A(1-42) on long-term potentiation in acute hippocampal slices and on membrane conductance in primary neurons, and mitigates an A(1-42) phenotype in Caenorhabditis elegans. A(1-38) also reverses any loss of MTT conversion induced by A(1-40) and A(1-42) in HT-22 hippocampal neurons and APOE 4-positive human fibroblasts, although the combination of A(1-38) and A(1-42) inhibits MTT conversion in APOE 4-negative fibroblasts. A greater ratio of soluble A(1-42)/A(1-38) [and A(1-42)/A(1-40)] in autopsied brain extracts correlates with an earlier age-at-death in males (but not females) with a diagnosis of AD. These results suggest that A(1-38) is capable of physically counteracting, potentially in a sex-dependent manner, the neuropathological effects of the AD-relevant A(1-42).
-
[
Front Pharmacol,
2020]
Oligomeric assembly of Amyloid- (A) is the main toxic species that contribute to early cognitive impairment in Alzheimer's patients. Therefore, drugs that reduce the formation of A oligomers could halt the disease progression. In this study, by using transgenic <i>Caenorhabditis elegans</i> model of Alzheimer's disease, we investigated the effects of frondoside A, a well-known sea cucumber <i>Cucumaria frondosa</i> saponin with anti-cancer activity, on A aggregation and proteotoxicity. The results showed that frondoside A at a low concentration of 1 M significantly delayed the worm paralysis caused by A aggregation as compared with control group. In addition, the number of A plaque deposits in transgenic worm tissues was significantly decreased. Frondoside A was more effective in these activities than ginsenoside-Rg3, a comparable ginseng saponin. Immunoblot analysis revealed that the level of small oligomers as well as various high molecular weights of A species in the transgenic <i>C. elegans</i> were significantly reduced upon treatment with frondoside A, whereas the level of A monomers was not altered. This suggested that frondoside A may primarily reduce the level of small oligomeric forms, the most toxic species of A. Frondoside A also protected the worms from oxidative stress and rescued chemotaxis dysfunction in a transgenic strain whose neurons express A. Taken together, these data suggested that low dose of frondoside A could protect against A-induced toxicity by primarily suppressing the formation of A oligomers. Thus, the molecular mechanism of how frondoside A exerts its anti-A aggregation should be studied and elucidated in the future.
-
[
Naturwissenschaften,
2004]
Animals respond to signals and cues in their environment. The difference between a signal (e.g. a pheromone) and a cue (e.g. a waste product) is that the information content of a signal is subject to natural selection, whereas that of a cue is not. The model free-living nematode Caenorhabditis elegans forms an alternative developmental morph (the dauer larva) in response to a so-called 'dauer pheromone', produced by all worms. We suggest that the production of 'dauer pheromone' has no fitness advantage for an individual worm and therefore we propose that 'dauer pheromone' is not a signal, but a cue. Thus, it should not be called a pheromone.
-
[
J Antibiot (Tokyo),
1990]
Cochlioquinone A, isolated from the fungus Helminthosporium sativum, was found to have nematocidal activity. Cochlioquinone A is a competitive inhibitor of specific [3H]ivermectin binding suggesting that cochlioquinone A and ivermectin interact with the same membrane receptor.
-
[
J Lab Autom,
2016]
Microfluidic devices offer new technical possibilities for a precise manipulation of Caenorhabditis elegans due to the comparable length scale. C. elegans is a small, free-living nematode worm that is a popular model system for genetic, genomic, and high-throughput experimental studies of animal development and neurobiology. In this paper, we demonstrate a microfluidic system in polydimethylsiloxane (PDMS) for dispensing of a single C. elegans worm into a 96-well plate. It consists of two PDMS layers, a flow and a control layer. Using five microfluidic pneumatic valves in the control layer, a single worm is trapped upon optical detection with a pair of optical fibers integrated perpendicular to the constriction channel and then dispensed into a microplate well with a dispensing tip attached to a robotic handling system. Due to its simple design and facile fabrication, we expect that our microfluidic chip can be expanded to a multiplexed dispensation system of C. elegans worms for high-throughput drug screening.
-
[
Curr Biol,
2017]
The
pha-1 gene of Caenorhabditis elegans was originally heralded as a master regulator of organ differentiation. A new study suggests instead that
pha-1 actually serves no role in development and instead is a component of a selfish genetic element.