-
[
J Vis Exp,
2013]
The nematode Caenorhabditis elegans is a versatile model organism for biomedical research because of its conservation of disease-related genes and pathways as well as its ease of cultivation. Several C. elegans disease models have been reported, including neurodegenerative disorders such as Parkinson's disease (PD), which involves the degeneration of dopaminergic (DA) neurons (1). Both transgenes and neurotoxic chemicals have been used to induce DA neurodegeneration and consequent movement defects in worms, allowing for investigations into the basis of neurodegeneration and screens for neuroprotective genes and compounds (2,3). Screens in lower eukaryotes like C. elegans provide an efficient and economical means to identify compounds and genes affecting neuronal signaling. Conventional screens are typically performed manually and scored by visual inspection; consequently, they are time-consuming and prone to human errors. Additionally, most focus on cellular level analysis while ignoring locomotion, which is an especially important parameter for movement disorders. We have developed a novel microfluidic screening system (Figure 1) that controls and quantifies C. elegans' locomotion using electric field stimuli inside microchannels. We have shown that a Direct Current (DC) field can robustly induce on-demand locomotion towards the cathode ("electrotaxis") (4). Reversing the field's polarity causes the worm to quickly reverse its direction as well. We have also shown that defects in dopaminergic and other sensory neurons alter the swimming response (5). Therefore, abnormalities in neuronal signaling can be determined using locomotion as a read-out. The movement response can be accurately quantified using a range of parameters such as swimming speed, body bending frequency and reversal time. Our work has revealed that the electrotactic response varies with age. Specifically, young adults respond to a lower range of electric fields and move faster compared to larvae (4). These findings led us to design a new microfluidic device to passively sort worms by age and phenotype (6). We have also tested the response of worms to pulsed DC and Alternating Current (AC) electric fields. Pulsed DC fields of various duty cycles effectively generated electrotaxis in both C. elegans and its cousin C. briggsae (7). In another experiment, symmetrical AC fields with frequencies ranging from 1 Hz to 3 KHz immobilized worms inside the channel (8). Implementation of the electric field in a microfluidic environment enables rapid and automated execution of the electrotaxis assay. This approach promises to facilitate high-throughput genetic and chemical screens for factors affecting neuronal function and viability.
-
[
J Biol Chem,
2001]
Caenorhabditis elegans UNC-5 and its mammalian homologues such as RCM are receptors for the secreted axon guidance cue UNC-6/netrin and are required to mediate the repulsive effects of UNC-6/netrin on growth cones. We find that C. elegans UNC-5 and mouse RCM are phosphorylated on tyrosine in vivo. C. elegans UNC-5 tyrosine phosphorylation is reduced in
unc-6 null mutants, and RCM tyrosine phosphorylation is induced by netrin-1 in transfected HEK-293 cells, demonstrating that phosphorylation of UNC-5 proteins is enhanced by UNC-6/netrin stimulation in both worms and mammalian cells. An activated Src tyrosine kinase induces phosphorylation of RCM at multiple cytoplasmic tyrosine residues creating potential binding sites for cytoplasmic signaling proteins. Indeed, the NH2-terminal SH2 domain of the Shp2 tyrosine phosphatase bound specifically to a Tyr(568) RCM phosphopeptide. Furthermore, Shp2 associated with RCM in a netrin-dependent manner in transfected cells, and co-immunoprecipitated with RCM from an embryonic mouse brain lysate. A Y568F mutant RCM receptor failed to bind Shp2 and was more highly phosphorylated on tyrosine than the wild type receptor. These results suggest that netrin-stimulated phosphorylation of RCM Tyr(568) recruits Shp2 to the cell membrane where it can potentially modify RCM phosphorylation and function.
-
[
J Neurosci Methods,
2010]
Dye-filling is a common method used to stain Caenorhabditis elegans sensory neurons in vivo. While the amphids and phasmids are easy to stain, a subset of sensory neurons, the IL2 neurons, are difficult to stain reproducibly. Here we examined the conditions under which the IL2 neurons take up the lipophilic fluorescent dye DiI. We find that IL2 dye-filling depends on salt concentration, but not osmolarity. Low salt prior and during incubation is important for efficient dye uptake. Additional parameters that affect dye-filling are the speed of shaking during incubation and the addition of detergents. Our modified dye-filling procedure provides a reliable method to distinguish mutant alleles that stain amphids and phasmids, IL2 neurons, or both. An additional benefit is that it can also stain the excretory duct. The method allows genetic screens to be performed to identify mutants that selectively affect only one of the sensory structures or the excretory duct.
-
[
Biochemistry,
1987]
The major intestinal esterase from the nematode Caenorhabditis elegans has been purified to essential homogeneity. Starting from whole worms, the overall purification is 9000-fold with a 10% recovery of activity. The esterase is a single polypeptide chain of Mr 60,000 and is stoichiometrically inhibited by organophosphates. Substrate preferences and inhibition patterns classify the enzyme as a carboxylesterase (EC 3.1.1.1), but the physiological function is unknown. The sequence of 13 amino acid residues at the esterase N- terminus has been determined. This partial sequence shows a surprisingly high degree of similarity to the N-terminal sequence of two carboxylesterases recently isolated from Drosophila mojavensis [Pen, J., van Beeumen, J., & Beintema, J. J. (1986) Biochem. J. 238, 691-699].
-
Berynskyy M, Morimoto RI, Bukau B, Stengel F, Kirstein J, Szlachcic A, Arnsburg K, Stank A, Scior A, Nillegoda NB, Gao X, Guilbride DL, Aebersold R, Wade RC, Mayer MP
[
Nature,
2015]
Protein aggregates are the hallmark of stressed and ageing cells, and characterize several pathophysiological states. Healthy metazoan cells effectively eliminate intracellular protein aggregates, indicating that efficient disaggregation and/or degradation mechanisms exist. However, metazoans lack the key heat-shock protein disaggregase HSP100 of non-metazoan HSP70-dependent protein disaggregation systems, and the human HSP70 system alone, even with the crucial HSP110 nucleotide exchange factor, has poor disaggregation activity in vitro. This unresolved conundrum is central to protein quality control biology. Here we show that synergic cooperation between complexed J-protein co-chaperones of classes A and B unleashes highly efficient protein disaggregation activity in human and nematode HSP70 systems. Metazoan mixed-class J-protein complexes are transient, involve complementary charged regions conserved in the J-domains and carboxy-terminal domains of each J-protein class, and are flexible with respect to subunit composition. Complex formation allows J-proteins to initiate transient higher order chaperone structures involving HSP70 and interacting nucleotide exchange factors. A network of cooperative class A and B J-protein interactions therefore provides the metazoan HSP70 machinery with powerful, flexible, and finely regulatable disaggregase activity and a further level of regulation crucial for cellular protein quality control.
-
[
Mol Immunol,
1999]
Invertebrate cells lack the
p53 recombination checkpoint but contain mobile DNA sequences that transpose by a mechanism in part shared with excision of the V(D)J recombination signal sequences (RSS). In this work, inversion, deletion, and duplication of sequences associated with an invertebrate C. elegans Tc6 element is described. The structure of this C. elegans sequence and other dispersed Tc6 elements suggests that covalently closed 'hairpin' structures are not unique to excision of the V(D)J RSS by the RAG proteins, but rather can be generated by transposases at transposon termini leading to characteristic inversion and duplication events. Comparative analysis of recombination events at invertebrate sequences resembling the vertebrate V(D)J RSS may be useful in understanding V(D)J recombination-mediated recombination events in malignant vertebrate cells or genetic diseases such as ataxia telangectasia, in which the
p53 recombination checkpoint is defective.
-
[
Phytother Res,
2008]
A bioassay-guided fractionation of Juniperus procera berries yielded antiparasitic, nematicidal and antifouling constituents, including a wide range of known abietane, pimarane and labdane diterpenes. Among these, abieta-7,13-diene (1) demonstrated in vitro antimalarial activity against Plasmodium falciparum D6 and W2 strains (IC(50) = 1.9 and 2.0 microg/mL, respectively), while totarol (6), ferruginol (7) and 7beta-hydroxyabieta-8,13-diene-11,12-dione (8) inhibited Leishmania donovani promastigotes with IC(50) values of 3.5-4.6 microg/mL. In addition, totarol demonstrated nematicidal and antifouling activities against Caenorhabditis elegans and Artemia salina at a concentration of 80 microg/mL and 1 microg/mL, respectively. The resinous exudate of J. virginiana afforded known antibacterial E-communic acid (4) and 4-epi-abietic acid (5), while the volatile oil from its trunk wood revealed large quantities of cedrol (9). Using GC/MS, the two known abietanes totarol (6) and ferruginol (7) were identified from the berries of J. procera, J. excelsa and J. phoenicea.
-
[
Micromachines (Basel),
2020]
Microinjection is an established and reliable method to deliver transgenic constructs and other reagents to specific locations in <i>C. elegans</i> worms. Specifically, microinjection of a desired DNA construct into the distal gonad is the most widely used method to generate germ-line transformation of <i>C. elegans</i>. Although, current <i>C. elegans</i> microinjection method is effective to produce transgenic worms, it requires expensive multi degree of freedom (DOF) micromanipulator, careful injection alignment procedure and skilled operator, all of which make it slow and not suitable for scaling to high throughput. A few microfabricated microinjectors have been developed recently to address these issues. However, none of them are capable of immobilizing a freely mobile animal such as <i>C. elegans</i> worm using a passive immobilization mechanism. Here, a microfluidic microinjector was developed to passively immobilize a freely mobile animal such as <i>C. elegans</i> and simultaneously perform microinjection by using a simple and fast mechanism for needle actuation. The entire process of the microinjection takes ~30 s which includes 10 s for worm loading and aligning, 5 s needle penetration, 5 s reagent injection and 5 s worm unloading. The device is suitable for high-throughput and can be potentially used for creating transgenic <i>C. elegans</i>.
-
[
Aging Cell,
2017]
Protein aggregation is enhanced upon exposure to various stress conditions and aging, which suggests that the quality control machinery regulating protein homeostasis could exhibit varied capacities in different stages of organismal lifespan. Recently, an efficient metazoan disaggregase activity was identified invitro, which requires the Hsp70 chaperone and Hsp110 nucleotide exchange factor, together with single or cooperating J-protein co-chaperones of classes A and B. Here, we describe how the orthologous Hsp70s and J-protein of Caenorhabditis elegans work together to resolve protein aggregates both invivo and invitro to benefit organismal health. Using an RNAi knockdown approach, we show that class A and B J-proteins cooperate to form an interactive flexible network that relocalizes to protein aggregates upon heat shock and preferentially recruits constitutive Hsc70 to disaggregate heat-induced protein aggregates and polyQ aggregates that form in an age-dependent manner. Cooperation between class A and B J-proteins is also required for organismal health and promotes thermotolerance, maintenance of fecundity, and extended viability after heat stress. This disaggregase function of J-proteins and Hsc70 therefore constitutes a powerful regulatory network that is key to Hsc70-based protein quality control mechanisms in metazoa with a central role in the clearance of aggregates, stress recovery, and organismal fitness in aging.
-
[
Nat Genet,
2002]
Mice that are homozygous with respect to a mutation (ax(J)) in the ataxia (ax) gene develop severe tremors by 2-3 weeks of age followed by hindlimb paralysis and death by 6-10 weeks of age. Here we show that ax encodes ubiquitin-specific protease 14 (Usp14). Ubiquitin proteases are a large family of cysteine proteases that specifically cleave ubiquitin conjugates. Although Usp14 can cleave a ubiquitin-tagged protein in vitro, it is unable to process polyubiquitin, which is believed to be associated with the protein aggregates seen in Parkinson disease, spinocerebellar ataxia type 1 (SCA1; ref. 4) and gracile axonal dystrophy (GAD). The physiological substrate of Usp14 may therefore contain a mono-ubiquitin side chain, the removal of which would regulate processes such as protein localization and protein activity. Expression of Usp14 is significantly altered in ax(J)/ax(J) mice as a result of the insertion of an intracisternal-A particle (IAP) into intron 5 of Usp14. In contrast to other neurodegenerative disorders such as Parkinson disease and SCA1 in humans and GAD in mice, neither ubiquitin-positive protein aggregates nor neuronal cell loss is detectable in the central nervous system (CNS) of ax(J) mice. Instead, ax(J) mice have defects in synaptic transmission in both the central and peripheral nervous systems. These results suggest that ubiquitin proteases are important in regulating synaptic activity in mammals.