[
J Biol Chem,
1998]
In an attempt to identify proteins that might underlie membrane trafficking processes in ciliates, calcium-dependent, phospholipid-binding proteins were isolated from extracts of Paramecium tetraurelia. The major protein obtained, named copine, had a mass of 55 kDa, bound phosphatidylserine but not phosphatidylcholine at micromolar levels of calcium but not magnesium, and promoted lipid vesicle aggregation. The sequence of a 920-base pair partial cDNA revealed that copine is a novel protein that contains a C2 domain likely to be responsible for its membrane active properties. Paramecium was found to have two closely related copine genes, CPN1 and CPN2. Current sequence data bases indicate the presence of multiple copine homologs in green plants, nematodes, and humans. The full-length sequences reveal that copines consist of two C2 domains at the N terminus followed by a domain similar to the A domain that mediates interactions between integrins and extracellular ligands. A human homolog, copine I, was expressed in bacteria as a fusion protein with glutathione S-transferase. This recombinant protein exhibited calcium-dependent phospholipid binding properties similar to those of Paramecium copine. An antiserum raised against a fragment of human copine I was used to identify chromobindin 17, a secretory vesicle-binding protein, as a copine. This association with secretory vesicles, as well the general ability of copines to bind phospholipid bilayers in a calcium-dependent manner, suggests that these proteins may function in membrane trafficking.
Shimono K, Honda N, Hasegawa T, Takahashi M, Hashimoto N, Sudo Y, Hayashi S, Mizutani K, Miyauchi S, Yamamoto M, Takagi S, Yamashita K, Tsukamoto T, Murata T
[
J Biol Chem,
2016]
Thermophilic rhodopsin (TR) is a photoreceptor protein with an extremely high thermal stability and the first characterized light-driven electrogenic proton pump derived from the extreme thermophile Thermus thermophilus JL-18. In this study, we confirmed its high thermal stability compared with other microbial rhodopsins and also report the potential availability of TR for optogenetics as a light-induced neural silencer. The x-ray crystal structure of TR revealed that its overall structure is quite similar to that of xanthorhodopsin, including the presence of a putative binding site for a carotenoid antenna; but several distinct structural characteristics of TR, including a decreased surface charge and a larger number of hydrophobic residues and aromatic-aromatic interactions, were also clarified. Based on the crystal structure, the structural changes of TR upon thermal stimulation were investigated by molecular dynamics simulations. The simulations revealed the presence of a thermally induced structural substate in which an increase of hydrophobic interactions in the extracellular domain, the movement of extracellular domains, the formation of a hydrogen bond, and the tilting of transmembrane helices were observed. From the computational and mutational analysis, we propose that an extracellular LPGG motif between helices F and G plays an important role in the thermal stability, acting as a "thermal sensor." These findings will be valuable for understanding retinal proteins with regard to high protein stability and high optogenetic performance.