-
[
Elife,
2015]
Nuclear pore complexes (NPCs) conduct massive transport mediated by shuttling nuclear transport receptors (NTRs), while keeping nuclear and cytoplasmic contents separated. The NPC barrier in Xenopus relies primarily on the intrinsically disordered FG domain of Nup98. We now observed that Nup98 FG domains of mammals, lancelets, insects, nematodes, fungi, plants, amoebas, ciliates, and excavates spontaneously and rapidly phase-separate from dilute (submicromolar) aqueous solutions into characteristic 'FG particles'. This required neither sophisticated experimental conditions nor auxiliary eukaryotic factors. Instead, it occurred already during FG domain expression in bacteria. All Nup98 FG phases rejected inert macromolecules and yet allowed far larger NTR cargo complexes to rapidly enter. They even recapitulated the observations that large cargo-domains counteract NPC passage of NTRcargo complexes, while cargo shielding and increased NTRcargo surface-ratios override this inhibition. Their exquisite NPC-typical sorting selectivity and strong intrinsic assembly propensity suggest that Nup98 FG phases can form in authentic NPCs and indeed account for the permeability properties of the pore.
-
[
EMBO J,
2023]
Nucleoporins (Nups) assemble nuclear pores that form the permeability barrier between nucleoplasm and cytoplasm. Nucleoporins also localize in cytoplasmic foci proposed to function as pore pre-assembly intermediates. Here, we characterize the composition and incidence of cytoplasmic Nup foci in an intact animal, C. elegans. We find that, in young non-stressed animals, Nup foci only appear in developing sperm, oocytes and embryos, tissues that express high levels of nucleoporins. The foci are condensates of highly cohesive FG repeat-containing nucleoporins (FG-Nups), which are maintained near their solubility limit in the cytoplasm by posttranslational modifications and chaperone activity. Only a minor fraction of FG-Nup molecules concentrate in Nup foci, which dissolve during M phase and are dispensable for nuclear pore assembly. Nucleoporin condensation is enhanced by stress and advancing age, and overexpression of a single FG-Nup in post-mitotic neurons is sufficient to induce ectopic condensation and organismal paralysis. We speculate that Nup foci are non-essential and potentially toxic condensates whose assembly is actively suppressed in healthy cells.
-
[
Pan Afr Med J,
2020]
Introduction: onchocerciasis is one of the major infectious diseases caused by Onchocerca volvulus. This parasite is responsible for chronic cutaneous and ocular diseases affecting more than 37 million people of whom 99% are in Africa. The study was conducted in the health district of Ntui from June to September 2016 to determine the prevalence of O. volvulus infection after seven years of massive administration of ivermectin. Methods: two cutaneous snips were made at the iliac crests level in volunteers. These tissues were incubated in physiological saline water and were examined for parasitological investigations in the laboratory. Results: a total of 310 participants were randomly selected, of whom 170 (54.8%) were women and 140 (45.1%) were men aged 6 to 83 years, thus giving a sex ratio of 1.2 in favour of women. After parasitological analysis, 26 participants had microfilaraemia, of whom 15 (10.7%) were men and 11 (6.4%) were women. The most infected age group was 16 to 26 years (12.5%). The highest infection rates were found among farmers (11%) and participants living in the village of Essougly (26.6%). No significant differences in prevalence values between the different groups were noted, whatever the parameter considered. Conclusion: the prevalence of onchocerciasis in the health district of Ntui has declined from a hyperendemic to a hypoendemic state after seven years of massive administration of ivermectin. However, careful monitoring of onchocerciasis should be continued to prevent the area from returning to its original hyperendemicity.
-
[
EMBO Rep,
2002]
The mechanism by which macromolecules are translocated through the nuclear pore complex (NPC) is little understood. However, recent measurements of nuclear transport in permeabilized cells showed that molecules binding to phenylalanine-glycine-rich repeats (FG repeats) in NPC proteins were translocated much faster through the NPC than molecules not interacting with FG repeats. We have studied that substrate preference of the NPC in isolated oocyte nuclei and purified nuclear envelopes by optical single transporter recording. NTF2, the transport receptor of RanGDP, was exported approximately 30 times faster than green fluorescent protein, an inert molecule of approximately the same size. The data confirm that restricted diffusion of inert molecules and facilitated transport of FG-repeat binding proteins are basic types of translocation through the NPC, demonstrating that the functional integrity of the NPC can be conserved in isolated nuclei and nuclear envelopes and thus opening new avenues to the analysis of nucleocytoplasmic transport.
-
[
J Cell Biol,
2011]
The immortal and totipotent properties of the germ line depend on determinants within the germ plasm. A common characteristic of germ plasm across phyla is the presence of germ granules, including P granules in Caenorhabditis elegans, which are typically associated with the nuclear periphery. In C. elegans, nuclear pore complex (NPC)-like FG repeat domains are found in the VASA-related P-granule proteins GLH-1, GLH-2, and GLH-4 and other P-granule components. We demonstrate that P granules, like NPCs, are held together by weak hydrophobic interactions and establish a size-exclusion barrier. Our analysis of intestine-expressed proteins revealed that GLH-1 and its FG domain are not sufficient to form granules, but require factors like PGL-1 to nucleate the localized concentration of GLH proteins. GLH-1 is necessary but not sufficient for the perinuclear location of granules in the intestine. Our results suggest that P granules extend the NPC environment in the germ line and provide insights into the roles of the PGL and GLH family proteins.
-
[
Elife,
2014]
In epithelial collective migration, leader and follower cells migrate while maintaining cell-cell adhesion and tissue polarity. We have identified a conserved protein and interactors required for maintaining cell adhesion during a simple collective migration in the developing C. elegans male gonad. LINKIN is a previously uncharacterized, transmembrane protein conserved throughout Metazoa. We identified seven atypical FG-GAP domains in the extracellular domain, which potentially folds into a -propeller structure resembling the -integrin ligand-binding domain. C. elegans LNKN-1 localizes to the plasma membrane of all gonadal cells, with apical and lateral bias. We identified the LINKIN interactors RUVBL1, RUVBL2, and -tubulin by using SILAC mass spectrometry on human HEK 293T cells and testing candidates for
lnkn-1-like function in C. elegans male gonad. We propose that LINKIN promotes adhesion between neighboring cells through its extracellular domain and regulates microtubule dynamics through RUVBL proteins at its intracellular domain.
-
[
Biol Open,
2017]
In Caenorhabditis elegans, five pharyngeal gland cells reside in the terminal bulb of the pharynx and extend anterior processes to five contact points in the pharyngeal lumen. Pharyngeal gland cells secrete mucin-like proteins thought to facilitate digestion, hatching, molting and assembly of the surface coat of the cuticle, but supporting evidence has been sparse. Here we show pharyngeal gland cell expression of PQN-75, a unique protein containing an N-terminal signal peptide, nucleoporin (Nup)-like phenylalanine/glycine (FG) repeats, and an extensive polyproline repeat domain with similarities to human basic salivary proline-rich pre-protein PRB2. Imaging of C-terminal tagged PQN-75 shows localization throughout pharyngeal gland cell processes but not the pharyngeal lumen; instead, aggregates of PQN-75 are occasionally found throughout the pharynx, suggesting secretion from pharyngeal gland cells into the surrounding pharyngeal muscle. PQN-75 does not affect fertility and brood size in C. elegans but confers some degree of stress resistance and thermotolerance through unknown mechanisms.
-
[
EMBO J,
1997]
The oncogenic nucleoporin CAN/Nup214 is essential in vertebrate cells. Its depletion results in defective nuclear protein import, inhibition of messenger RNA export and cell cycle arrest. We recently found that CAN associates with proteins of 88 and 112 kDa, which we have now cloned and characterized. The 88 kDa protein is a novel nuclear pore complex (NPC) component, which we have named Nup88. Depletion of CAN from the NPC results in concomitant loss of Nup88, indicating that the localization of Nup88 to the NPC is dependent on CAN binding. The 112 kDa protein is the human homologue of yeast CRM1, a protein known to be required for maintenance of correct chromosome structure. This human CRM1 (hCRM1) localized to the NPC as well as to the nucleoplasm. Nuclear overexpression of the FG-repeat region of CAN, containing its hCRM1-interaction domain, resulted in depletion of hCRM1 from the NPC. In CAN-/- mouse embryos lacking CAN, hCRM1 remained in the nuclear envelope, suggesting that this protein can also bind to other repeat-containing nucleoporins. Lastly, hCRM1 shares a domain of significant homology with importin-beta, a cytoplasmic transport factor that interacts with nucleoporin repeat regions. We propose that hCRM1 is a soluble nuclear transport factor that interacts with the NPC.
-
[
Curr Biol,
2014]
RNAi is a potent mechanism for downregulating gene expression. Conserved RNAi pathway components are found in animals, plants, fungi, and other eukaryotes. In C. elegans, the RNAi response is greatly amplified by the synthesis of abundant secondary small interfering RNAs (siRNAs). Exogenous double-stranded RNA is processed by Dicer and RDE-1/Argonaute into primary siRNA that guides target mRNA recognition. The RDE-10/RDE-11 complex and the RNA-dependent RNA polymerase RRF-1 then engage the target mRNA for secondary siRNA synthesis. However, the molecular link between primary siRNA production and secondary siRNA synthesis remains largely unknown. Furthermore, it is unclear whether the subcellular sites for target mRNA recognition and degradation coincide with sites where siRNA synthesis and amplification occur. In the C. elegans germline, cytoplasmic P granules at the nuclear pores and perinuclear Mutator foci contribute to target mRNA surveillance and siRNA amplification, respectively. We report that RDE-12, a conserved phenylalanine-glycine (FG) domain-containing DEAD box helicase, localizes in P granules and cytoplasmic foci that are enriched in RSD-6 but are excluded from the Mutator foci. Our results suggest that RDE-12 promotes secondary siRNA synthesis by orchestrating the recruitment of RDE-10 and RRF-1 to primary siRNA-targeted mRNA in distinct cytoplasmic compartments.
-
[
RNA,
2000]
Human TAP and Saccharomyces cerevisiae Mex67p belong to a family of proteins that mediate mRNA export. Computer searches identified previously two Caenorhabditis elegans genes, C15H11.3 and C115H11.6, that encode putative homologs of hTAP and Mex67p (Segref et al., EMBO J, 1997, 16:3256-3271). Using RNA interference experiments in C. elegans, we found that functional knockout of C15H11.3 resulted in nuclear accumulation of poly(A)-containing RNAs and was lethal for both embryos and adult nematodes. No embryonic or progeny abnormality was observed in functional knockout of C15H11.6. Taken together, these data established that the C15H11.3 gene product is an ortholog of hTAP and Mex67p; thus, it was named Ce-NXF-1. Ce-NXF-1 binds RNA directly and is a nucleocytoplasmic shuttle protein accumulating in the nucleoplasm and at the nuclear rim. The rim association is mediated via unique signals present in the C-terminal portion of all TAP/NXF and Mex67p proteins. This region was shown to interact with the FG-repeat domains of nucleoporins Nup98, Nup153, and Nup214, indicating that the rim association occurs through components of the nuclear pore complex. In summary, Ce-NXF-1 belongs together with hTAP and Mex67p to a family of proteins that participate in mRNA export and can provide a direct molecular link between mRNAs and components of the nuclear pore complex. Therefore, despite differences in mRNA metabolism between these species, they utilize a conserved mRNA transport mechanism.