-
[
J Neurobiol,
1993]
Mutations causing a touch-insensitive phenotype in the nematode Caenorhabditis elegans have been the basis of studies on the specification of neuronal cell fate, inherited neurodegeneration, and the molecular nature of mechanosensory transduction. (C) 1993 John Wiley & sons, Inc.
-
[
Ageing Res Rev,
2013]
We have conducted a comprehensive literature review regarding the effect of vitamin E on lifespan in model organisms including single-cell organisms, rotifers, Caenorhabditis elegans, Drosophila melanogaster and laboratory rodents. We searched Pubmed and ISI Web of knowledge for studies up to 2011 using the terms "tocopherols", "tocotrienols", "lifespan" and "longevity" in the above mentioned model organisms. Twenty-four studies were included in the final analysis. While some studies suggest an increase in lifespan due to vitamin E, other studies did not observe any vitamin E-mediated changes in lifespan in model organisms. Furthermore there are several studies reporting a decrease in lifespan in response to vitamin E supplementation. Different outcomes between studies may be partly related to species-specific differences, differences in vitamin E concentrations and the vitamin E congeners administered. The findings of our literature review suggest that there is no consistent beneficial effect of vitamin E on lifespan in model organisms which is consistent with reports in human intervention studies.
-
[
Human Genome News,
1999]
For the first time, scientists have the nearly complete genetic instructions for an animal that, like humans, has a nervous system, digests food, and reproduces sexually. The 97-million-base genome of the tiny roundworm Caenorhabditis elegans was deciphered by an international team led by Robert Waterston and John Sulston. The work was reported in a special issue of the journal Science (December 11, 1998) that featured six articles describing the history and significance of the accomplishment and some early sequence-analysis results.
-
[
Science,
1994]
In 1967, Sydney Brenner isolated the first behavioral mutants of the nematode Caenorhabditis elegans, and in 1970, John White began the systematic reconstruction of its nervous system. This dual approach of genetics coupled with detailed morphological analysis, now enhanced by the tools of molecular biology and electrophysiology, still dominates the study of the function and development of the C. elegans nervous system. Although Brenner's vision of a comprehensive understanding of this simple animal has taken time to mature, findings of the past few years indicate that the tree is bearing fruit.
-
[
Cell Death Differ,
2004]
Awarding the 2002 Nobel Prize in Physiology or Medicine to Sydney Brenner, H Robert Horvitz, and John E Sulston for 'their discoveries concerning the genetic regulation of organ development and programmed cell death (PCD)' highlights the significant contribution that the study of experimental organisms, such as the nematode Caenorhabditis elegans, has made to our understanding of human physiology and pathophysiology. Their studies of lineage determination in worms established the 'central dogma' of apoptosis: The BH3-only protein EGL-1 is induced in cells destined to die, interacts with the BCL-2-like inhibitor CED-9, displacing the adaptor CED-4, which then promotes activation of the caspase CED-3. The vast majority of cells undergoing PCD during development in C. elegans, as in vertebrates, are neurons. Accordingly, the genetic regulation of apoptosis is strikingly similar in nematode and vertebrate neurons. This review summarizes these similarities - and the important differences - in the molecular mechanisms responsible for neuronal PCD in C. elegans and vertebrates, and examines the implications that our understanding of physiological neuronal apoptosis may have for the diagnosis and treatment of acute and chronic human neurodegenerative
-
[
Parasitol Today,
1990]
Many aspects of the biology of kinetoplastids are unique, so it is surprising that they share with nematodes an unusual post-transcriptional process called trans-splicing. During this process, a small conserved RNA sequence is added to the 5' non-translated ends of transcribed RNAs of protein-encoding genes. Trypanosomes and nematodes are the only organisms to date in which these sequences have been described, and the biological significance of trans-splicing remains a mystery but may be of wider occurrence in invertebrates. In this review, John Donelson and Wenlin Zeng compare the process in nematodes and trypanosomes and speculate on its raison d'etre.
-
[
Hermann, Editeurs des Sciences et des Arts. Paris, France.,
2002]
L'espce Caenorhabditis elegans fut dcrite en 1900 Alger par E. Maupas, qui s'intressait son mode de reproduction hermaphrodite. Plus tard, vers le milieu du vingtime sicle, V. Nigon et ses collaboratuers Lyon tudirent les reorganizations cellulaires accompagnant la fecundation et les premiers clivages. J. Brun isola les preiers mutants morpholgiques.
-
[
Parasite,
1994]
Two genes coding for cuticlin components of Coenorhabditis elegans have been cloned and their structure is described. Recombinant proteins have been produced in E. coli and antibodies raised against them. Nucleic acid and specific antibodies are being used to isolate the homologues from the parasitic species Ascaris lumbricoides and Brugia pahangi.
-
[
Seminars in Developmental Biology,
1994]
Gastrulation in Caenorhabditis elegans has been described by following the movements of individual nuclei in living embryos by Nomarski microscopy. Gastrulation starts in the 26-cell stage when the two gut precursors, Ea and Ep, move into the blastocoele. The migration of Ea and Ep does not depend on interactions with specific neighboring cells and appears to rely on the earlier fate specification of the E lineage. In particular, the long cell cycle length of Ea and Ep appears important for gastrulation. Later in embryogenesis, the precursors to the germline, muscle and pharynx join the E descendants in the interior. As in other organisms, the movement of gastrulation permit novel cell contacts that are important for the specification of certain cell fates.
-
[
Wiley Interdiscip Rev Dev Biol,
2013]
The transcriptional regulatory hierarchy that controls development of the Caenorhabditis elegans endoderm begins with the maternally provided SKN-1 transcription factor, which determines the fate of the EMS blastomere of the four-cell embryo. EMS divides to produce the posterior E blastomere (the clonal progenitor of the intestine) and the anterior MS blastomere, a major contributor to mesoderm. This segregation of lineage fates is controlled by an intercellular signal from the neighboring P2 blastomere and centers on the HMG protein POP-1. POP-1 would normally repress the endoderm program in both E and MS but two consequences of the P2-to-EMS signal are that POP-1 is exported from the E-cell nucleus and the remaining POP-1 is converted to an endoderm activator by complexing with SYS-1, a highly diverged -catenin. In the single E cell, a pair of genes encoding small redundant GATA-type transcription factors, END-1 and END-3, are transcribed under the combined control of SKN-1, the POP-1/SYS-1 complex, as well as the redundant pair of MED-1/2 GATA factors, themselves direct zygotic targets of SKN-1 in the EMS cell. With the expression of END-1/END-3, the endoderm is specified. END-1 and END-3 then activate transcription of a further set of GATA-type transcription factors that drive intestine differentiation and function. One of these factors, ELT-2, appears predominant; a second factor, ELT-7, is partially redundant with ELT-2. The mature intestine expresses several thousand genes, apparently all controlled, at least in part, by cis-acting GATA-type motifs.