[
Dev Growth Differ,
2013]
Since the dawn of transgenic technology some 40years ago, biologists have sought ways to manipulate, at their discretion, the expression of particular genes of interest in living organisms. The infrared laser-evoked gene operator (IR-LEGO) is a recently developed system for inducing gene expression in living organisms in a targeted fashion. It exploits the highly efficient capacity of an infrared laser for heating cells, to provide a high level of gene expression driven by heat-inducible promoters. By irradiating living specimens with a laser under a microscope, heat shock responses can be induced in individual cells, thereby inducing a particular gene, under the control of a heat shock promoter, in specifically targeted cells. In this review we first summarize previous attempts to drive transgene expression in organisms by using heat shock promoters, and then introduce the basic principle of the IR-LEGO system, and its applications.
[
J Cell Sci,
2004]
Junctional adhesion molecules (JAMs) are members of an immunoglobulin subfamily expressed by leukocytes and platelets as well as by epithelial and endothelial cells, in which they localize to cell-cell contacts and are specifically enriched at tight junctions. The recent identification of extracellular ligands and intracellular binding proteins for JAMs suggests two functions for JAMs. JAMs associate through their extracellular domains with the leukocyte beta2 integrins LFA-1 and Mac-1 as well as with the beta1 integrin alpha4beta1. All three integrins are involved in the regulation of leukocyte-endothelial cell interactions. Through their cytoplasmic domains, JAMs directly associate with various tight junction-associated proteins including ZO-1, AF-6, MUPP1 and the cell polarity protein PAR-3. PAR-3 is part of a ternary protein complex that contains PAR-3, atypical protein kinase C and PAR-6. This complex is highly conserved through evolution and is involved in the regulation of cell polarity in organisms from Caenorhabditis elegans and Drosophila to vertebrates. These findings point to dual functions for JAMs: they appear to regulate both leukocyte/platelet/endothelial cell interactions in the immune system and tight junction formation in epithelial and endothelial cells during the acquisition of cell polarity.
[
Crit Rev Biochem Mol Biol,
2012]
The CCAAT box promoter element and NF-Y, the transcription factor (TF) that binds to it, were among the first cis-elements and trans-acting factors identified; their interplay is required for transcriptional activation of a sizeable number of eukaryotic genes. NF-Y consists of three evolutionarily conserved subunits: a dimer of NF-YB and NF-YC which closely resembles a histone, and the "innovative" NF-YA. In this review, we will provide an update on the functional and biological features that make NF-Y a fundamental link between chromatin and transcription. The last 25 years have witnessed a spectacular increase in our knowledge of how genes are regulated: from the identification of cis-acting sequences in promoters and enhancers, and the biochemical characterization of the corresponding TFs, to the merging of chromatin studies with the investigation of enzymatic machines that regulate epigenetic states. Originally identified and studied in yeast and mammals, NF-Y - also termed CBF and CP1 - is composed of three subunits, NF-YA, NF-YB and NF-YC. The complex recognizes the CCAAT pentanucleotide and specific flanking nucleotides with high specificity (Dorn et al., 1997; Hatamochi et al., 1988; Hooft van Huijsduijnen et al, 1987; Kim & Sheffery, 1990). A compelling set of bioinformatics studies clarified that the NF-Y preferred binding site is one of the most frequent promoter elements (Suzuki et al., 2001, 2004; Elkon et al., 2003; Marino-Ramirez et al., 2004; FitzGerald et al., 2004; Linhart et al., 2005; Zhu et al., 2005; Lee et al., 2007; Abnizova et al., 2007; Grskovic et al., 2007; Halperin et al., 2009; Hakkinen et al., 2011). The same consensus, as determined by mutagenesis and SELEX studies (Bi et al., 1997), was also retrieved in ChIP-on-chip analysis (Testa et al., 2005; Ceribelli et al., 2006; Ceribelli et al., 2008; Reed et al., 2008). Additional structural features of the CCAAT box - position, orientation, presence of multiple Transcriptional Start Sites - were previously reviewed (Dolfini et al., 2009) and will not be considered in detail here.
[
International Journal of Developmental Biology,
1998]
Pleiotropy , a situation in which a single gene influences multiple phenotypic tra its, can arise in a variety of ways. This paper discusses possible underlying mechanisms and proposes a classification of the various phenomena involved.