-
[
PLoS One,
2024]
Sex differences in sex-shared behavior are common across various species. During mating, males transfer sperm and seminal fluid to females, which can affect female behavior. Sperm can be stored in the female reproductive tract for extended periods of time and used to fertilize eggs. However, the role of either sperm or embryo production in regulating female behavior is poorly understood. In the androdioecious nematode C. elegans, hermaphrodites produce both oocytes and sperm, enabling them to self-fertilize or mate with males. Hermaphrodites exhibit less locomotor activity compared to males, indicating sex difference in behavioral regulation. In this study, mutants defective in the sperm production and function were examined to investigate the role of sperm function in the regulation of locomotor behavior. Infertile hermaphrodites exhibited increased locomotor activity, which was suppressed after mating with fertile males. The results suggest that sperm, seminal fluid, or the presence of embryos are detected by hermaphrodites, leading to a reduction in locomotor activity. Additionally, females of closely related gonochoristic species, C. remanei and C. brenneri, exhibited reduced locomotor activity after mating. The regulation of locomotion by sperm function may be an adaptive mechanism that enables hermaphrodites lacking sperm or embryo to search for mates and allow females to cease their search for mates after mating.
-
[
Neurosci Lett,
2002]
The neurotransmitter dopamine regulates locomotion and egg laying in the nematode Caenorhabditis elegans. We have cloned a cDNA encoding the C. elegans G protein-coupled receptor (CeDOP1). The deduced amino acid sequence of the cloned cDNA shows high sequence similarities with D1-like dopamine receptors from other species. Three splice variants that differ in the length of the predicted third intracellular loop and C-terminal tail were identified. COS-7 cells transiently transfected with CeDOP1 showed high affinity binding to [1251] iodo-lysergic acid diethylamide (K-D = 3.43 +/- 0.83 nM). Dopamine showed the highest affinity (K-i = 0.186 muM) for this receptor among several vertebrate and invertebrate amine neurotransmitters tested, suggesting that the natural ligand for this receptor is dopamine.
-
[
J Neurochem,
2003]
The neurotransmitter dopamine plays an important role in the regulation of behavior in both vertebrates and invertebrates. In mammals, dopamine binds and activates two classes of dopamine receptors, D1-like and D2-like receptors. However, D2-like dopamine receptors in Caenorhabditis elegans have not yet been characterized. We have cloned a cDNA encoding a putative C. elegans D2-like dopamine receptor. The deduced amino acid sequence of the cloned cDNA shows higher sequence similarities to vertebrate D2-like dopamine receptors than to D1-like receptors. Two splice variants that differ in the length of their predicted third intracellular loops were identified. The receptor heterologously expressed in cultured cells showed high affinity binding to [(125) I]iodo-lysergic acid diethylamide. Dopamine showed the highest affinity for this receptor among several amine neurotransmitters tested. Activation of the heterologously expressed receptor led to the inhibition of cyclic AMP production, confirming that this receptor has the functional property of a D2-like receptor. We have also analyzed the expression pattern of this receptor and found that the receptor is expressed in several neurons including all the dopaminergic neurons in C. elegans.
-
[
PLoS One,
2013]
Animals change their behavior and metabolism in response to external stimuli. cAMP response element binding protein (CREB) is a signal-activated transcription factor that enables the coupling of extracellular signals and gene expression to induce adaptive changes. Biogenic amine neurotransmitters regulate CREB and such regulation is important for long-term changes in various nervous system functions, including learning and drug addiction. In Caenorhabditis elegans, the amine neurotransmitter octopamine activates a CREB homolog, CRH-1, in cholinergic SIA neurons, whereas dopamine suppresses CREB activation by inhibiting octopamine signaling in response to food stimuli. However, the physiological role of this activation is unknown. In this study, the effect of dopamine, octopamine, and CREB on acetylcholine signaling was analyzed using the acetylcholinesterase inhibitor aldicarb. Mutants with decreased dopamine signaling exhibited reduced acetylcholine signaling, and octopamine and CREB functioned downstream of dopamine in this regulation. This study demonstrates that the regulation of CREB by amine neurotransmitters modulates acetylcholine release from the neurons of C. elegans.
-
[
EMBO J,
2009]
Animals assess food availability in their environment by sensory perception and respond to the absence of food by changing hormone and neurotransmitter signals. However, it is largely unknown how the absence of food is perceived at the level of functional neurocircuitry. In Caenorhabditis elegans, octopamine is released from the RIC neurons in the absence of food and activates the cyclic AMP response element binding protein in the cholinergic SIA neurons. In contrast, dopamine is released from dopaminergic neurons only in the presence of food. Here, we show that dopamine suppresses octopamine signalling through two D2-like dopamine receptors and the G protein Gi/o. The D2-like receptors work in both the octopaminergic neurons and the octopamine-responding SIA neurons, suggesting that dopamine suppresses octopamine release as well as octopamine-mediated downstream signalling. Our results show that C. elegans detects the absence of food by using a small neural circuit composed of three neuron types in which octopaminergic signalling is activated by the cessation of dopamine signalling.
-
[
Aging (Albany NY),
2009]
Amine neurotransmitters, such as dopamine, serotonin, and noradrenaline, play important roles in the modulation of behaviors and metabolism of animals. InC. elegans, it has been shown that serotonin and octopamine, an invertebrate equivalent of noradrenaline, also regulate lifespan through a mechanism related to food deprivation-mediated lifespan extension. We have shown recently that dopamine signaling, activated by the tactile perception of food, suppresses octopamine signaling and that the cessation of dopamine signaling in the absence of food leads to activation of octopamine signaling. Here, we discuss the apparent conservation of neural and molecular mechanisms for dopamine regulation of octopamine/noradrenaline signaling and a possible role for dopamine in lifespan regulation.
-
[
J Neurosci,
2019]
Sex differences in behavior allow animals to effectively mate and reproduce. However, the mechanism by which biological sex regulates behavioral states, which underlie the regulation of sex-shared behaviors such as locomotion, is largely unknown. In this study, we studied sex differences in the behavioral states of <i>C. elegans</i> and found that males spend less time in a low locomotor activity state than hermaphrodites and that dopamine generates this sex difference. In males, dopamine reduces the low activity state by acting in the same pathway as polycystic kidney disease-related genes that function in male-specific neurons. In hermaphrodites, dopamine increases the low activity state by suppression of octopamine signaling in the sex-shared SIA neurons, which have reduced responsiveness to octopamine in males. Furthermore, dopamine promotes exploration both inside and outside of bacterial lawn (the food source) in males and suppresses it in hermaphrodites. These results demonstrate that sexually dimorphic signaling allows the same neuromodulator to promote adaptive behavior for each sex.<b>SIGNIFICANCE STATEMENT</b>The mechanisms that generate sex differences in sex-shared behaviors including locomotion are not well understood. We show that there are sex differences in the regulation of behavioral states in the model animal <i>C. elegans</i> Dopamine promotes the high locomotor activity state in males, which must search for mates to reproduce, and suppresses it in self-fertilizing hermaphrodites through distinct molecular mechanisms. This study demonstrates that sex-specific signaling generates sex differences in the regulation of behavioral states, which in turn modulates the locomotor activity to suit reproduction for each sex.
-
[
J Neurosci,
2006]
The nervous system plays a critical role in adaptation to a new environment. In Caenorhabditis elegans, reduced access to food requires both changes in behavior as well as metabolic adaptation for survival, which is postulated to involve the bioamine octopamine. The transcription factor cAMP response element-binding protein (CREB) is generally activated by G-protein-coupled receptors (GPCRs) that activate G alpha(s) and is known to play an important role in long-term changes, including synaptic plasticity. We show that, in C. elegans, the CREB ortholog CRH-1 (CREB homolog family member 1) activates in vivo a cAMP response element-green fluorescent protein fusion reporter in a subset of neurons during starvation. This starvation response is mediated by octopamine via the GPCR SER-3 (serotonin/octopamine receptor family member 3) and is fully dependent on the subsequent activation of the G alpha(q) ortholog EGL-30 (egg-laying defective family member 30). The signaling cascade is only partially dependent on the phospholipase C beta (EGL-8) and is negatively regulated by G alpha(o) [GOA-1 (G-protein, O, alpha subunit family member 1)] and calcium/calmodulin-dependent kinase [UNC-43 (uncoordinated family member 43)]. Nonstarved animals in a liquid environment mediate a similar response that is octopamine independent. The results show that the endogenous octopamine system in C. elegans is activated by starvation and that different environmental stimuli can activate CREB through G alpha(q).
-
[
Int J Dev Biol,
2017]
Body size is one of the basic traits of animals and is regulated to adapt to the environment. Animals perceive environmental stimuli with sensory neurons, and signals from the nervous system alter the size of organs, thus regulating body size. The model animal Caenorhabditis elegans is particularly suited for genetic analysis of body size regulation, and has already contributed to the elucidation of various genetic pathways that regulate body size. In this review, we summarize the available literature regarding environmental factors that regulate body size and the role of the nervous system in such regulation. We discuss in detail a recent report on body size regulation by the neurotransmitter, dopamine.
-
[
J Biol Chem,
2007]
The biological methyl donor, S adenosylmethionine (AdoMet), can exist in two diastereoisomeric states with respect to its sulfonium ion. The "S" configuration, (S,S)AdoMet, is the only form that is produced enzymatically as well as the only form used in almost all biological methylation reactions. Under physiological conditions, however, the sulfonium ion can spontaneously racemize to the "R" form, producing (R,S)AdoMet. As of yet, (R,S)AdoMet has no known physiological function and may inhibit cellular reactions. In this study, two enzymes have been found in Saccharomyces cerevisiae that are capable of recognizing (R,S)AdoMet and using it to methylate homocysteine to form methionine. These enzymes are the products of the SAM4 and MHT1 genes, previously identified as homocysteine methyltransferases dependent upon AdoMet and S-methylmethionine respectively. We find here that Sam4 recognizes both (S,S) and (R,S)AdoMet, but its activity is much higher with the R,S form. Mht1 reacts with only the R,S form of AdoMet while no activity is seen with the S,S form. R,S-specific homocysteine methyltransferase activity is also shown here to occur in extracts of Arabidopsis thaliana, Drosophila melanogaster, and Caenorhabditis elegans, but has not been detected in several tissue extracts of Mus musculus. Such activity may function to prevent the accumulation of (R,S)AdoMet in these organisms.