-
Hayashi S, Reissig L, Sugo S, Ono H, Inoue K, Ihara K, Kandori H, Takagi S, Sudo Y, Kamiya M, Okazaki A, Yagasaki J
[
J Biol Chem,
2013]
Ion-transporting rhodopsins are widely utilized as optogenetic tools both for light-induced neural activation and silencing. The most studied representative is Bacteriorhodopsin (BR), which absorbs green/red light (570 nm) and functions as a proton pump. Upon photoexcitation, BR induces a hyperpolarization across the membrane, which, if incorporated into a nerve cell, results in its neural silencing. In this study, we show that several residues around the retinal chromophore, which are completely conserved among BR homologs from the archaea, are involved in the spectral tuning in a BR homolog (HwBR) and that the combination mutation causes a large spectral blue shift (max = 498 nm) while preserving the robust pumping activity. Quantum mechanics/molecular mechanics calculations revealed that, compared with the wild type, the -ionone ring of the chromophore in the mutant is rotated 130 because of the lack of steric hindrance between the methyl groups of the retinal and the mutated residues, resulting in the breakage of the conjugation system on the polyene chain of the retinal. By the same mutations, similar spectral blue shifts are also observed in another BR homolog, archearhodopsin-3 (also called Arch). The color variant of archearhodopsin-3 could be successfully expressed in the neural cells of Caenorhabditis elegans, and illumination with blue light (500 nm) led to the effective locomotory paralysis of the worms. Thus, we successfully produced a blue-shifted proton pump for neural silencing.
-
[
Mol Biol Evol,
2007]
The Y genes encode small non-coding RNAs whose functions remain elusive, whose numbers vary between species, and whose major property is to be bound by the Ro60 protein (or its ortholog in other species). To better understand the evolution of the Y gene family, we performed a homology search in 27 different genomes along with a structural search using Y RNA specific motifs. These searches confirmed that Y RNAs are well conserved in the animal kingdom and resulted in the detection of several new Y RNA genes, including the first Y RNAs in insects and a second Y RNA detected in Caenorhabditis elegans. Unexpectedly, Y5 genes were retrieved almost as frequently as Y1 and Y3 genes, and, consequently are not the result of a relatively recent apparition as is generally believed. Investigation of the organization of the Y genes demonstrated that the synteny was conserved among species. Interestingly, it revealed the presence of six putative "fossil" Y genes, all of which were Y4 and Y5 related. Sequence analysis led to inference of the ancestral sequences for all Y RNAs. In addition, the evolution of existing Y RNAs was deduced for many families, orders and classes. Moreover, a consensus sequence and secondary structure for each Y species was determined. Further evolutionary insight was obtained from the analysis of several thousand Y retropseudogenes among various species. Taken together, these results confirm the rich and diversified evolution history of Y RNAs.
-
[
RNA,
2009]
Noncoding Y RNAs are required for the reconstitution of chromosomal DNA replication in late G1 phase template nuclei in a human cell-free system. Y RNA genes are present in all vertebrates and in some isolated nonvertebrates, but the conservation of Y RNA function and key determinants for its function are unknown. Here, we identify a determinant of Y RNA function in DNA replication, which is conserved throughout vertebrate evolution. Vertebrate Y RNAs are able to reconstitute chromosomal DNA replication in the human cell-free DNA replication system, but nonvertebrate Y RNAs are not. A conserved nucleotide sequence motif in the double-stranded stem of vertebrate Y RNAs correlates with Y RNA function. A functional screen of human Y1 RNA mutants identified this conserved motif as an essential determinant for reconstituting DNA replication in vitro. Double-stranded RNA oligonucleotides comprising this RNA motif are sufficient to reconstitute DNA replication, but corresponding DNA or random sequence RNA oligonucleotides are not. In intact cells, wild-type hY1 or the conserved RNA duplex can rescue an inhibition of DNA replication after RNA interference against hY3 RNA. Therefore, we have identified a new RNA motif that is conserved in vertebrate Y RNA evolution, and essential and sufficient for Y RNA function in human chromosomal DNA replication.
-
[
J Bacteriol,
2006]
Yersinia pestis, the agent of plague, is usually transmitted by fleas. To produce a transmissible infection, Y. pestis colonizes the flea midgut and forms a biofilm in the proventricular valve, which blocks normal blood feeding. The enteropathogen Yersinia pseudotuberculosis, from which Y. pestis recently evolved, is not transmitted by fleas. However, both Y. pestis and Y. pseudotuberculosis form biofilms that adhere to the external mouthparts and block feeding of Caenorhabditis elegans nematodes, which has been proposed as a model of Y. pestis-flea interactions. We compared the ability of Y. pestis and Y. pseudotuberculosis to infect the rat flea Xenopsylla cheopis and to produce biofilms in the flea and in vitro. Five of 18 Y. pseudotuberculosis strains, encompassing seven serotypes, including all three serotype O3 strains tested, were unable to stably colonize the flea midgut. The other strains persisted in the flea midgut for 4 weeks but did not increase in numbers, and none of the 18 strains colonized the proventriculus or produced a biofilm in the flea. Y. pseudotuberculosis strains also varied greatly in their ability to produce biofilms in vitro, but there was no correlation between biofilm phenotype in vitro or on the surface of C. elegans and the ability to colonize or block fleas. Our results support a model in which a genetic change in the Y. pseudotuberculosis progenitor of Y. pestis extended its pre-existing ex vivo biofilm-forming ability to the flea gut environment, thus enabling proventricular blockage and efficient flea-borne transmission.
-
[
Mol Cell Biol,
2001]
Weak hypomorph mutations in the enhancer of yellow genes, e(y)1 and e(y)2, of Drosophila melanogaster were discovered during the search for genes involved in the organization of interaction between enhancers and promoters. Previously, the e(y)1 gene was cloned and found to encode TAF(II)40 protein. Here we cloned the e(y)2 gene and demonstrated that it encoded a new ubiquitous evolutionarily conserved transcription factor. The e(y)2 gene is located at 10C3 (36.67) region and is expressed at all stages of Drosophila development. It encodes a 101-amino-acid protein, e(y)2. Vertebrates, insects, protozoa, and plants have proteins which demonstrate a high degree of homology to e(y)2. The e(y)2 protein is localized exclusively to the nuclei and is associated with numerous sites along the entire length of the salivary gland polytene chromosomes. Both genetic and biochemical experiments demonstrate an interaction between e(y)2 and TAF(II)40, while immunoprecipitation studies demonstrate that the major complex, including both proteins, appears to be distinct from TFIID. Furthermore, we provide genetic evidence suggesting that the carboxy terminus of dTAF(II)40 is important for mediating this interaction. Finally, using an in vitro transcription system, we demonstrate that recombinant e(y)2 is able to enhance transactivation by GAL4-VP16 on chromatin but not on naked DNA templates, suggesting that this novel protein is involved in the regulation of transcription.
-
[
EMBO Rep,
2005]
It is known that Yersinia pestis kills Caenorhabditis elegans by a biofilm-dependent mechanism that is similar to the mechanism used by the pathogen to block food intake in the flea vector. Using Y. pestis KIM 5, which lacks the genes that are required for biofilm formation, we show that Y. pestis can kill C. elegans by a biofilm-independent mechanism that correlates with the accumulation of the pathogen in the intestine. We used this novel Y. pestis-C. elegans pathogenesis system to show that previously known and unknown virulence-related genes are required for full virulence in C. elegans. Six Y. pestis mutants with insertions in genes that are not related to virulence before were isolated using C. elegans. One of the six mutants carried an insertion in a novel virulence gene and showed significantly reduced virulence in a mouse model of Y. pestis pathogenesis. Our results indicate that the Y. pestis-C. elegans pathogenesis system that is described here can be used to identify and study previously uncharacterized Y. pestis gene products required for virulence in mammalian systems.
-
[
J Am Chem Soc,
2022]
Apoptosis is a type of programmed cell death that commonly occurs in multicellular organisms including humans and that is essential to eliminate unnecessary cells to keep organisms healthy. Indeed, inappropriate apoptosis leads to various diseases such as cancer and autoimmune disease. Here, we developed an optical method to regulate apoptotic cell death by controlling the intracellular pH with outward or inward proton pump rhodopsins, Archaerhodopsin-3 (AR3) or Rubricoccus marinas xenorhodopsin (RmXeR), respectively. The alkalization-induced shrinking of human HeLa cells cultured at pH 9.0 was significantly accelerated or decelerated by light-activated AR3 or RmXeR, respectively, implying the contribution of intracellular alkalization to the cell death. The light-activated AR3 induced cell shrinking at a physiologically neutral pH 7.4 and biochemical analysis revealed that the intracellular alkalization caused by AR3 triggered the mitochondrial apoptotic signaling pathway, which resulted in cell death accompanied by morphological changes. Phototriggered apoptosis (PTA) was also observed for other human cell lines, SH-SY5Y and A549 cells, implying its general applicability. We then used the PTA method with the nematode Caenorhabditis elegans as a model for living animals. Irradiation of transgenic worms expressing AR3 in chemosensing amphid sensory neurons significantly decreased their chemotaxis responses, which suggests that AR3 induced the cell death of amphid sensory neurons and the depression of chemotaxis responses. Thus, the PTA method has a high applicability both in vivo and in vitro, which suggests its potential as an optogenetic tool to selectively eliminate target cells with a high spatiotemporal resolution.
-
[
PLoS One,
2012]
BACKGROUND: Optogenetic techniques using light-driven ion channels or ion pumps for controlling excitable cells have greatly facilitated the investigation of nervous systems in vivo. A model organism, C. elegans, with its small transparent body and well-characterized neural circuits, is especially suitable for optogenetic analyses. METHODOLOGY/PRINCIPAL FINDINGS: We describe the application of archaerhodopsin-3 (Arch), a recently reported optical neuronal silencer, to C. elegans. Arch::GFP expressed either in all neurons or body wall muscles of the entire body by means of transgenes were localized, at least partially, to the cell membrane without adverse effects, and caused locomotory paralysis of worms when illuminated by green light (550 nm). Pan-neuronal expression of Arch endowed worms with quick and sustained responsiveness to such light. Worms reliably responded to repeated periods of illumination and non-illumination, and remained paralyzed under continuous illumination for 30 seconds. Worms expressing Arch in different subsets of motor neurons exhibited distinct defects in the locomotory behavior under green light: selective silencing of A-type motor neurons affected backward movement while silencing of B-type motor neurons affected forward movement more severely. Our experiments using a heat-shock-mediated induction system also indicate that Arch becomes fully functional only 12 hours after induction and remains functional for more than 24 hour. CONCLUSIONS/SGNIFICANCE: Arch can be used for silencing neurons and muscles, and may be a useful alternative to currently widely used halorhodopsin (NpHR) in optogenetic studies of C. elegans.
-
[
Mol Cell,
2007]
Chromatin insulators affect interactions between promoters and enhancers/silencers and function as barriers for spreading of repressive chromatin. The Su(Hw) protein is responsible for activity of the best-studied Drosophila insulators. Here we demonstrate that an evolutionarily conserved protein, E(y)2/Sus1, is recruited to the Su(Hw) insulators via binding to the zinc-finger domain of Su(Hw). Partial inactivation of E(y)2 in a weak mutation, e(y)2
(u1), impairs only the barrier, but not the enhancer-blocking, activity of the Su(Hw) insulators. Whereas neither su(Hw)(-) nor e(y)2
(u1) affects fly viability, their combination proves lethal, testifying to functional interaction between Su(Hw) and E(y)2 in vivo. Apparently, different domains of Su(Hw) recruit proteins responsible for enhancer-blocking and for the barrier activity.
-
[
Infect Immun,
2008]
Y. pestis, the causative agent of plague, must survive in blood in order to cause disease and to be transmitted from host-to-host by the flea. Members of the Ail/Lom family of outer membrane proteins provide protection from complement-dependent killing for a number of pathogenic bacteria. The Y. pestis KIM genome is predicted to encode four Ail/Lom family proteins. Y. pestis mutants specifically deficient in expression of each of these proteins were constructed using lambda Red-mediated recombination. The Ail outer membrane protein was essential for Y. pestis to resist complement-mediated killing at 26 degrees C and 37 degrees C. Ail was expressed at high levels at both 26 degrees C and 37 degrees C, but not at 6 degrees C. Expression of Ail in E. coli provided protection from the bacteriocidal activity of complement. High-level expression of the three other Y. pestis Ail/Lom family proteins (
y1682,
y2034 and
y2446) provided no protection against complement-mediated bacterial killing. A Y. pestis ail deletion mutant was rapidly killed by sera obtained from all mammals tested except mouse serum. The role of Ail in infections of mice, C. elegans and fleas was investigated.