-
[
Nanotoxicology,
2019]
An adverse outcome pathway (AOP) is a framework that organizes the mechanistic or predictive relationships between molecular initiating events (MIEs), key events (KEs), and adverse outcomes (AOs). Previously, we intensively investigated the molecular mechanism that underlies toxicity caused by AgNPs in the nematode Caenorhabditis elegans. Using transcriptomics, functional genetics, and various molecular/biochemical tools, we identified oxidative stress as the major mechanism underlying toxicity and reproduction failure as the outcome. With this information, here we conducted a case study of building an AOP to link oxidative stress with reproductive toxicity. To validate this AOP, we filled the gaps by conducting further experiments on its elements, such as NADPH oxidase, ROS formation, PMK-1 P38 MAPK activation, HIF-1 activation, mitochondrial damage, DNA damage, and apoptosis. The establishment of a causal link between the MIE and AO is critical for the construction of an AOP. Therefore, causal relationships between each KE and AO were verified by using functional genetic mutants of each KE. By combining these experimental data with our previously published results, we established causal relationships between the MIE, KEs, and AO using a Bayesian network (BN) model, culminating in an AOP entitled 'NADPH oxidase and P38 MAPK activation leading to reproductive failure in C. elegans ( https://aopwiki.org/aops/207)' . Overall, our approach shows that an AOP can be developed using existing data and further experiments can be conducted to fill the gaps between the MIE, KEs, and the AO. This study also shows that BN modeling has the potential to identify causal relationships in an AOP.
-
Caldwell GA, Chesi A, Geddie ML, Gitler AD, Strathearn KE, Lindquist S, Rochet JC, Caldwell KA, Cooper AA, Hamamichi S, Hill KJ
[
Nat Genet,
2009]
Parkinson''s disease (PD), dementia with Lewy bodies and multiple system atrophy, collectively referred to as synucleinopathies, are associated with a diverse group of genetic and environmental susceptibilities. The best studied of these is PD. alpha-Synuclein (alpha-syn) has a key role in the pathogenesis of both familial and sporadic PD, but evidence linking it to other predisposition factors is limited. Here we report a strong genetic interaction between alpha-syn and the yeast ortholog of the PD-linked gene ATP13A2 (also known as PARK9). Dopaminergic neuron loss caused by alpha-syn overexpression in animal and neuronal PD models is rescued by coexpression of PARK9. Further, knockdown of the ATP13A2 ortholog in Caenorhabditis elegans enhances alpha-syn misfolding. These data provide a direct functional connection between alpha-syn and another PD susceptibility locus. Manganese exposure is an environmental risk factor linked to PD and PD-like syndromes. We discovered that yeast PARK9 helps to protect cells from manganese toxicity, revealing a connection between PD genetics (alpha-syn and PARK9) and an environmental risk factor (PARK9 and manganese). Finally, we show that additional genes from our yeast screen, with diverse functions, are potent modifiers of alpha-syn-induced neuron loss in animals, establishing a diverse, highly conserved interaction network for alpha-syn.
-
McCaffery JM, Hamamichi S, Bevis BJ, Lindquist S, Caldwell GA, Strathearn KE, Shorter J, Gitler AD, Su LJ, Caldwell KA, Barlowe C, Rochet JC
[
Proc Natl Acad Sci U S A,
2008]
alpha-Synuclein (alpha-syn), a protein of unknown function, is the most abundant protein in Lewy bodies, the histological hallmark of Parkinson''s disease (PD). In yeast alpha-syn inhibits endoplasmic reticulum (ER)-to-Golgi (ER-->Golgi) vesicle trafficking, which is rescued by overexpression of a Rab GTPase that regulates ER-->Golgi trafficking. The homologous Rab1 rescues alpha-syn toxicity in dopaminergic neuronal models of PD. Here we investigate this conserved feature of alpha-syn pathobiology. In a cell-free system with purified transport factors alpha-syn inhibited ER-->Golgi trafficking in an alpha-syn dose-dependent manner. Vesicles budded efficiently from the ER, but their docking or fusion to Golgi membranes was inhibited. Thus, the in vivo trafficking problem is due to a direct effect of alpha-syn on the transport machinery. By ultrastructural analysis the earliest in vivo defect was an accumulation of morphologically undocked vesicles, starting near the plasma membrane and growing into massive intracellular vesicular clusters in a dose-dependent manner. By immunofluorescence/immunoelectron microscopy, these clusters were associated both with alpha-syn and with diverse vesicle markers, suggesting that alpha-syn can impair multiple trafficking steps. Other Rabs did not ameliorate alpha-syn toxicity in yeast, but RAB3A, which is highly expressed in neurons and localized to presynaptic termini, and RAB8A, which is localized to post-Golgi vesicles, suppressed toxicity in neuronal models of PD. Thus, alpha-syn causes general defects in vesicle trafficking, to which dopaminergic neurons are especially sensitive.
-
Strathearn KE, Su LJ, Bell GW, Lindquist S, Fraenkel E, Hill KJ, Auluck PK, Rochet JC, Liu F, Yeger-Lotem E, McCaffery JM, Cao S, Cooper AA, Caldwell KA, Tardiff DF, Hamamichi S, Caldwell GA, Kritzer JA, Outeiro TF
[
Dis Model Mech,
2010]
alpha-Synuclein (alpha-syn) is a small lipid-binding protein involved in vesicle trafficking whose function is poorly characterized. It is of great interest to human biology and medicine because alpha-syn dysfunction is associated with several neurodegenerative disorders, including Parkinson''s disease (PD). We previously created a yeast model of alpha-syn pathobiology, which established vesicle trafficking as a process that is particularly sensitive to alpha-syn expression. We also uncovered a core group of proteins with diverse activities related to alpha-syn toxicity that is conserved from yeast to mammalian neurons. Here, we report that a yeast strain expressing a somewhat higher level of alpha-syn also exhibits strong defects in mitochondrial function. Unlike our previous strain, genetic suppression of endoplasmic reticulum (ER)-to-Golgi trafficking alone does not suppress alpha-syn toxicity in this strain. In an effort to identify individual compounds that could simultaneously rescue these apparently disparate pathological effects of alpha-syn, we screened a library of 115,000 compounds. We identified a class of small molecules that reduced alpha-syn toxicity at micromolar concentrations in this higher toxicity strain. These compounds reduced the formation of alpha-syn foci, re-established ER-to-Golgi trafficking and ameliorated alpha-syn-mediated damage to mitochondria. They also corrected the toxicity of alpha-syn in nematode neurons and in primary rat neuronal midbrain cultures. Remarkably, the compounds also protected neurons against rotenone-induced toxicity, which has been used to model the mitochondrial defects associated with PD in humans. That single compounds are capable of rescuing the diverse toxicities of alpha-syn in yeast and neurons suggests that they are acting on deeply rooted biological processes that connect these toxicities and have been conserved for a billion years of eukaryotic evolution. Thus, it seems possible to develop novel therapeutic strategies to simultaneously target the multiple pathological features of PD.
-
Xu K, Rochet JC, Bhullar B, Cashikar A, Liu K, Cooper AA, Caldwell KA, Hill KJ, Liu F, Gitler AD, Lindquist S, Labaer J, Caldwell GA, Haynes CM, Kolodner RD, Marsischky G, Bonini NM, Cao S, Strathearn KE
[
Science,
2006]
Alpha-synuclein (alphaSyn) misfolding is associated with several devastating neurodegenerative disorders, including Parkinson''s disease (PD). In yeast cells and in neurons alphaSyn accumulation is cytotoxic, but little is known about its normal function or pathobiology. The earliest defect following alphaSyn expression in yeast was a block in endoplasmic reticulum (ER)-to-Golgi vesicular trafficking. In a genomewide screen, the largest class of toxicity modifiers were proteins functioning at this same step, including the Rab guanosine triphosphatase Ypt1p, which associated with cytoplasmic alphaSyn inclusions. Elevated expression of Rab1, the mammalian YPT1 homolog, protected against alphaSyn-induced dopaminergic neuron loss in animal models of PD. Thus, synucleinopathies may result from disruptions in basic cellular functions that interface with the unique biology of particular neurons to make them especially vulnerable.
-
[
Autophagy,
2022]
Macroautophagy/autophagy, an evolutionarily conserved degradation system, serves to clear intracellular components through the lysosomal pathway. Mounting evidence has revealed cytoprotective roles of autophagy; however, the intracellular causes of overactivated autophagy, which has cytotoxic effects, remain elusive. Here we show that sustained proteotoxic stress induced by loss of the <u>RI</u>NG and <u>Ke</u>lch repeat-containing protein C53A5.6/RIKE-1 induces sequestration of LET-363/MTOR complex and overactivation of autophagy, and consequently impairs epithelial integrity in <i>C. elegans</i>. In C53A5.6/RIKE-1-deficient animals, blocking autophagosome formation effectively prevents excessive endosomal degradation, mitigates mislocalization of intestinal membrane components and restores intestinal lumen morphology. However, autophagy inhibition does not affect LET-363/MTOR aggregation in animals with compromised C53A5.6/RIKE-1 function. Improving proteostasis capacity by reducing DAF-2 insulin/IGF1 signaling markedly relieves the aggregation of LET-363/MTOR and alleviates autophagy overactivation, which in turn reverses derailed endosomal trafficking and rescues epithelial morphogenesis defects in C53A5.6/RIKE-1-deficient animals. Hence, our studies reveal that C53A5.6/RIKE-1-mediated proteostasis is critical for maintaining the basal level of autophagy and epithelial integrity.<b>Abbreviations:</b> ACT-5: actin 5; ACTB: actin beta; ALs: autolysosomes; APs: autophagosomes; AJM-1: apical junction molecule; ATG: autophagy related; C. elegans: Caenorhabditis elegans; CPL-1: cathepsin L family; DAF: abnormal dauer formation; DLG-1: Drosophila discs large homolog; ERM-1: ezrin/radixin/moesin; EPG: ectopic P granule; GFP: freen fluorescent protein; HLH-30: helix loop helix; HSP: heat shock protein; LAAT-1: lysosome associated amino acid transporter; LET: lethal; LGG-1: LC3, GABARAP and GATE-16 family; LMP-1: LAMP (lysosome-associated membrane protein) homolog; MTOR: mechanistic target of rapamycin kinase; NUC-1: abnormal nuclease; PEPT-1/OPT-2: Peptide transporter family; PGP-1: P-glycoprotein related; RAB: RAB family; RIKE-1: RING and Kelch repeat-containing protein; SLCF-1: solute carrier family; SQST-1: sequestosome related; SPTL-1: serine palmitoyl transferase family.