Transposition of Tc1 and Tc3 is initiated by binding of the respective transposases to the terminal inverted repeats of each transposon (1,2). Subsequently, the element is excised by double strand breaks near each transposon end (3). The cut at the 3' end of the element is between the last nucleotide of the transposon and the flanking genomic sequence. The cut at the 5' end is not at the end of the transposon, but two nucleotides within the transposon. After excision the donor site contains a double strand break with a two nucleotide extension at each 3' end. The cellular DNA repair processes have to seal the break to ensure cell viability. We have set up an in vivo assay to monitor the repair of excision induced double strand breaks in real time. A Tc3 allele of
unc-22 (
r750::Tc3) was crossed into a strain containing an inducible Tc3 transposase gene. Upon heat shock induction the transposase gene is expressed, resulting in transposition of Tc3. Digested genomic DNA of this strain was analysed on a Southern blot using a fragment of the
unc-22 gene flanking the donor site as a probe. After a two hour induction at an elevated temperature and a subsequent recovery of the worms at normal temperature a band appears of the size of the band expected from the wild type
unc-22 gene. This fragment was cloned and sequenced. It contains the
unc-22 sequence with characteristic Tc3 footprints (3). Twenty hours after the induction of transposase expression approximately 10 % of the
unc-22(
r750::Tc3) alleles have reverted. Hybridisation of the blot with the
unc-22 probe lead to the detection of an additional band. Based on the size and the specific hybridization of the band we conclude that this band corresponds to the broken
unc-22 fragment created during excision of Tc3. Approximately two hours after induction this band represent 1-2 % of all
unc-22::Tc3 sites. During the remainder of the experiment (up to twenty hours after induction) the intensity of this band stays constant, whereas the intensity of the band representing the repaired chromosome continues to increase. This indicates that the Tc3 elements are continuously excised and that the broken chromosome is continuously repaired. The structure of the left end and the right end of the broken chromosome was determined. The 5' ends and the 3' ends are in agreement with the structure predicted from the excised transposon (the 3' ends on both sides of the double strand break contain the two nucleotides which are not co-excised with the transposon, the 5' ends contain the target sequence and no transposon sequence).