[
Free Radic Biol Med,
2002]
THE HYPOTHESIS THAT THE RATE OF OXYGEN CONSUMPTION AND THE ENSUING ACCRUAL OF MOLECULAR OXIDATIVE DAMAGE CONSTITUTE A FUNDAMENTAL MECHANISM GOVERNING THE RATE OF AGING IS SUPPORTED BY SEVERAL LINES OF EVIDENCE: (i) life spans of cold blooded animals and mammals with unstable basal metabolic rate (BMR) are extended and oxidative damage (OxD) is attenuated by an experimental decrease in metabolic rate; (ii) single gene mutations in Drosophila and Caenorhabditis elegans that extend life span almost invariably result in a generalized slowing of physiological activities, albeit via different mechanisms, affecting a decrease in OxD; (iii) caloric restriction decreases body temperature and OxD; and, (iv) results of studies on the effects of transgenic overexpressions of antioxidant enzymes are generally supportive, but quite ambiguous. It is suggested that oxidative damage to proteins plays a crucial role in aging because oxidized proteins lose catalytic function and are preferentially hydrolyzed. It is hypothesized that oxidative damage to specific proteins constitutes one of the mechanisms linking oxidative stress/damage and age-associated losses in physiological functions.
[
Cell Calcium,
2011]
IP receptor is a Ca(2+) release channel localized on the endoplasmic reticulum. IP(3) receptor is composed of three isoforms, which are expressed in various cells and tissues, and play variety of roles throughout development. I here describe the role of IP receptor from oogenesis, meiotic maturation and fertilization. I also describe the Ca(2+) signaling at meiosis and mitosis, and especially the role in early embryogenesis to determine dorso-ventral axis formation. Loss of function mutation of type 1 IP receptor in mouse, both by gene targeting and spontaneous mutations shows severe ataxia and other phenotypes. Interestingly, double knockouts of type 1 and type 2 exhibit cardiogenesis arrest and that of type 2 and type 3 results in exocrine secretion deficit. IPR of Drosophila or Caenorhabditis elegans is single gene and mutation results severe phenotype of behavior. All the data described here show that IPRs are essential for life and abnormality of IP(3)Rs results in severe abnormality in its structure and function of organism.