-
[
Worm Breeder's Gazette,
1978]
All eyes are on the newest fashion trend, the Dumpy Look . Pace setting designer I.M. Worm s androgynous wardrobe is all the rage in Paris. Bianca Jagger quips, Tres, tres - Women s Wear Daily writes, Elegans personified - Patti Smith thinks, The punks won t buy it and Craig Russell says, It fits right in with my act . A product of Mutant Isolation, Inc.
-
[
J Neurosci,
2003]
Thermotactic behavior in Caenorhabditis elegans is sensitive to both a worm's ambient temperature (T-amb) and its memory of the temperature of its cultivation (T-cult). The AFD neuron is part of a neural circuit that underlies thermotactic behavior. By monitoring the fluorescence of pH-sensitive green fluorescent protein localized to synaptic vesicles, we measured the rate of the synaptic release of AFD in worms cultivated at temperatures between 15 and 25degreesC, and subjected to fixed, ambient temperatures in the same range. We found that the rate of AFD synaptic release is high if either T-amb > T-cult or T-amb > T-cult, but AFD synaptic release is low if T-amb congruent to T-cult. This suggests that AFD encodes a direct comparison between T-amb and T-cult.
-
[
Trends Mol Med,
2007]
Transforming growth factor beta1 (TGFbeta1), an important pleiotropic, immunoregulatory cytokine, uses distinct signaling mechanisms in lymphocytes to affect T-cell homeostasis, regulatory T (T(reg))-cell and effector-cell function and tumorigenesis. Defects in TGFbeta1 expression or its signaling in T cells correlate with the onset of several autoimmune diseases. TGFbeta1 prevents abnormal T-cell activation through the modulation of Ca(2+)-calcineurin signaling in a Caenorhabditis elegans Sma and Drosophila Mad proteins (SMAD)3 and SMAD4-independent manner; however, in T(reg) cells, its effects are mediated, at least in part, through SMAD signaling. TGFbeta1 also acts as a pro-inflammatory cytokine and induces interleukin (IL)-17-producing pathogenic T-helper cells (T(h) IL-17 cells) synergistically during an inflammatory response in which IL-6 is produced. Here, we will review TGFbeta1 and its signaling in T cells with an emphasis on the regulatory arm of immune tolerance.
-
[
Genomics,
1995]
Recently, a novel family of genes with a region of homology to the mouse T locus, which is known to play a crucial, and conserved, role in vertebrate development, has been discovered. The region of homology has been named the T-box. The T-box domain of the prototypical T locus product is associated with sequence-specific DNA binding activity. In this report, we have characterized four members of the T-box gene family from the nematode Caenorhabditis elegans. All lie in close proximity to each other in the middle of chromosome III. Homology analysis among all completely sequenced T-box products indicates a larger size for the conserved T-box domain (166 to 203 residues) than previously reported. Phylogenetic analysis suggests that one C. elegans T-box gene may be a direct ortholog of the mouse Tbx2 and Drosophila omb genes. The accumulated data demonstrate the ancient nature of the T-box gene family and suggest the existence of at least three separate T-box-containing genes in a common early metazoan ancestor to nematodes and vertebrates.
-
[
International Worm Meeting,
2013]
Self-avoidance, tiling and coexistence are the main mechanisms that enable the best dendritic coverage. C. elegans undergoes aging-associated changes that ultimately lead to decreased functionality of the organism, including its neurological functions. Recent research has shown that the nervous system of C. elegans undergoes changes and alterations during aging including dendritic morphology (Tank et al., 2011). We study dendritic plasticity, aging and spatial dendritic organization of two highly arborized mechanoreceptors in C. elegans, PVD and FLP (Oren-Suissa et al., 2010). PVD dendrites of L4s and young adults show regenerative ability following dendrotomy (laser induced severing of dendrites). Our working hypothesis is that in older ages this ability to regenerate is compromised. Previous studies and our preliminary results indicate that PVD and FLP do not overlap in larval stages (Smith et al., 2010). In addition, dendrites within each bilateral PVD do not overlap through a self-avoidance mechanism (Smith et al., 2012). We found that (1) the coverage fields of the PVD and FLP overlap in adult worms, which indicates coexistence and not tiling. This overlap increases as the worm ages. (2) PVDs show aberrant arborization at the age of 9 days of adulthood. (3) Dramatic increase in self-avoidance defects as animals age. In humans many neurodegenerative diseases as well as generalized cognitive decline are associated with age, aberrant arborization or both (e.g. autism and Alzheimer's disease). However our understanding of how these disorders are triggered and aggravated is scarce. Our research provides an insight into the aging and regeneration process of individual neurons. Oren-Suissa, M., et al. (2010). Science 328, 1285-1288. Smith, C.J. et al. (2010). Developmental Biology 345, 18-33. Smith, C.J., et al. (2012). Nature Neuroscience 15, 731-737. Tank, E.M.H. et al. (2011). Journal of Neuroscience 31, 9279-9288.
-
[
Glycobiology,
2006]
The common O-glycan core structure in animal glycoproteins is the core 1 disaccharide Galbeta1-3GalNAcalpha1-Ser/Thr, which is generated by addition of Gal to GalNAcalpha1-Ser/Thr by core 1 UDP-Gal:GalNAcalpha1-Ser/Thr beta1,3-galactosyltransferase (core 1 beta3-Gal-T or T-synthase, EC2.4.1.122)(2). Although O-glycans play important roles in vertebrates, much remains to be learned from model organisms such as the free-living nematode Caenorhabditis elegans, which offer many advantages in exploring O-glycan structure/function. Here we report the cloning and enzymatic characterization of T-synthase from C. elegans (Ce-T-synthase). A putative C. elegans gene for T-synthase, C38H2.2, was identified in GenBank by a BlastP search using the human T-synthase protein sequence. The full-length cDNA for Ce-T-synthase, which was generated by PCR using a C. elegans cDNA library as the template, contains 1,170 bp including the stop TAA. The cDNA encodes a protein of 389 amino acids with typical type-II membrane topology and a remarkable 42.7% identity to the human T-synthase. Ce-T-synthase has 7 Cys residues in the lumenal domain including 6 conserved Cys residues in all of the orthologs. The Ce-T-synthase has 4 potential N-glycosylation sequons, whereas the mammalian orthologs lack N-glycosylation sequons. Only one gene for Ce-T-synthase was identified in the genome-wide search and it contains 8 exons. Promoter analysis of the Ce-T-synthase using green fluorescent protein constructs show that the gene is expressed at all developmental stages and appears to be in all cells. Unexpectedly, only minimal activity was recovered in the recombinant, soluble Ce-T-synthase secreted from a wide variety of mammalian cell lines, whereas robust enzyme activity was recovered in the soluble Ce-T-synthase expressed in Hi-5 insect cells. Vertebrate T-synthase requires the molecular chaperone Cosmc, but our results show that Ce-T-synthase does not require Cosmc, and might require invertebrate-specific factors for formation of the optimally active enzyme. These results show that the Ce-T-synthase is a functional ortholog to the human T-synthase in generating core 1 O-glycans and opens new avenues to explore O-glycan function in this model organism.
-
[
Int J Syst Evol Microbiol,
2007]
A yellow-pigmented, Gram-positive, aerobic, non-motile, non-spore-forming, irregular rod-shaped bacterium (strain TAN 31504(T)) was isolated from the bacteriophagous nematode Caenorhabditis elegans. Based on 16S rRNA gene sequence similarity, DNA G+C content of 69.5 mol%, 2,4-diaminobutyric acid in the cell-wall peptidoglycan, major menaquinone MK-11, abundance of anteiso- and iso-fatty acids, polar lipids diphosphatidylglycerol and phosphatidylglycerol and a number of shared biochemical characteristics, strain TAN 31504(T) was placed in the genus Leucobacter. DNA-DNA hybridization comparisons demonstrated a 91 % DNA-DNA relatedness between strain TAN 31504(T) and Leucobacter chromiireducens LMG 22506(T) indicating that these two strains belong to the same species, when the recommended threshold value of 70 % DNA-DNA relatedness for the definition of a bacterial species by the ad hoc committee on reconciliation of approaches to bacterial systematics is considered. Based on distinct differences in morphology, physiology, chemotaxonomic markers and various biochemical characteristics, it is proposed to split the species L. chromiireducens into two novel subspecies, Leucobacter chromiireducens subsp. chromiireducens subsp. nov. (type strain L-1(T)=CIP 108389(T)=LMG 22506(T)) and Leucobacter chromiireducens subsp. solipictus subsp. nov. (type strain TAN 31504(T)=DSM 18340(T)=ATCC BAA-1336(T)).
-
[
Genetics,
2018]
Modern experimental techniques, such as whole-genome sequencing and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 endogenous genome editing, are enabling researchers to identify and further characterize the roles of proteins that were previously thought of as well defined. In the December 2016 issue of GENETICS, an article by Jaramillo-Lambert et al. identified a new role for the enzyme topoisomerase II in Caenorhabditis elegans male meiosis. This Primer article is designed to provide essential background information on C. elegans spermatogenesis and the relevant scientific techniques that will assist students and instructors in their understanding and discussion of the related article.Related article in GENETICS: Jaramillo-Lambert, A., A. S. Fabritius A. S., T. J. Hansen T. J., H. E. Smith H. E., and A. Golden A., 2016The identification of a novel mutant allele of topoisomerase II in Caenorhabditis elegans reveals a unique role in chromosome segregation during spermatogenesis. Genetics204: 1407-1422.
-
[
Genome,
1997]
The T-box gene family consists of members that share a unique DNA binding domain. The best characterized T-box gene, Brachyury or T, encodes a transcription factor that plays an important role in early vertebrate development. Seven other recently described mouse T-box genes are also expressed during development. In the nematode Caenorhabditis elegans, four T-box genes have been characterized to date. In this study, we describe three new C. elegans T-box genes, named
Ce-tbx-11,
Ce-tbx-12, and
Ce-tbx-17.
Ce-tbx-11 and
Ce-tbx-17 were uncovered through the sequencing efforts of the C. elegans Genome Project.
Ce-tbx-12 was uncovered through degenerate PCR analysis of C. elegans genomic DNA.
Ce-tbx-11 and
Ce-tbx-17 are located in close proximity to the four other previously described T-box genes in the central region of chromosome III. In contrast,
Ce-tbx-12 maps alone to chromosome II. Phylogenetic analysis of all known T-box domain sequences provides evidence of an ancient origin for this gene family.
-
[
European Worm Meeting,
2002]
T-box genes are a group of developmentally important transcription factors united by a common DNA binding domain. T-box genes are present in all metazoan species so far analysed but are absent from yeast. There are 20 T-box genes in C. elegans, more than twice the number found in Drosophila. Many of the C. elegans T-box genes are highly diverged from those found in other species while others have clear orthologues present throughout the metazoan kingdom. One highly conserved T-box gene is
mab-9, a member of the
tbx20 sub-family1. This was the first C. elegans T-box gene to be identified by mutation and is required for cell fate specification during hindgut and male tail development, and aspects of nervous system function. One other conserved T-box gene has recently been reported to be important for a particular muscle cell fate specification2. We have inactivated the remaining C. elegans T-box genes by RNAi and have found obvious phenotypes only in very few cases. These phenotypes include embryonic lethality, L1 lethality, and a Dpy phenotype with weakly penetrant male tail defects, and will be described in detail. The remaining T-box genes give no obvious phenotype by RNAi. Phylogenetic analysis reveals that several pairs of T-box genes are very similar to eachother and are therefore likely to be the result of recent duplications. This might suggest functional redundancy. Double RNAi experiments have revealed this to be the case with at least two of the T-box gene pairs (see also poster by Pocock et al). Study of the expression patterns of the whole T-box family may suggest other potential redundancy relationships which can be explored by RNAi. Comparison of the C. elegans T-box genes with the set of T-box genes now defined for C. briggsae is being used as a tool for defining potentially important regulatory regions present in orthologous genes.