-
[
Antibiot Chemother (Northfield),
1954]
Although the majority of antibiotics are of interest because of their activity against bacteria, a vigorous search is underway for antifungal agents. This effort stems from the resistance of many animal and plant pathogens to the known antibiotics. As a result of this effort, there are already about 50 well-defined antibiotics that are more or less active against the filamentous fungi, and because of the active search now in progress, many more such agents will undoubtedly be uncovered in the near future. These antibiotics can be classified into three groups based on the microorganisms that produce them. Among bacteria, the genus Bacillus has so far proved the most fruitful source of antibiotics. Examples of such antibiotics are bacillomycin, fungistatin, mycosubtilin, and toximycin. Those that have been sufficiently purified to judge are of polypeptide nature. Antifungal antibiotics derived from fungi are produced by a number of genera. Examples of such antibiotics are alternaric acid, aspergillic acid, gladiolic acid, glutinosin, griseofulvin, patulin, tricothecin, and viridin. The actinomycetes have yielded the largest number of antifungal agents, among them actinomycin, Actidione, antimycin, ascosin, candicidin, endomycin, fradicin, helixin, Rimocidin, and thiolutin. The antifungal antibiotics have not found widespread use because of inherent toxicity or other unfavorable properties. A few have been tried with some success against the agents of plant disease, and it may be in this and other nonmedical fields that they will have their greatest use. The purpose of this paper is to report a presumably new antifungal antibiotic, oligomycin.
-
[
Molecules,
2015]
Roemerine (RM) is an aporphine alkaloid isolated from the fresh rattan stem of Fibraurea recisa, and it has been demonstrated to have certain antifungal activity. This study aimed to investigate the antifungal activity of RM and the underlying mechanisms in Candida albicans (C. albicans). The in vitro antifungal activity of RM was evaluated by a series of experiments, including the XTT reduction assay, confocal laser scanning microscopy assay, scanning electron microscope assay. Results showed that 1 g/mL RM inhibited biofilm formation significantly (p < 0.01) both in Spider medium and Lee's medium. In addition, RM could inhibit yeast-to-hyphae transition of C. albicans in a dose-dependent manner. The biofilm-specific and hypha-specific genes such as YWP1, SAP5, SAP6, HWP1, ECE1 were up-regulated and EFG1 was down-regulated after 8 g/mL RM treatment. Furthermore, the toxicity of RM was investigated using C. elegans worms, three cancer cells and one normal cell. The date showed that RM had no significant toxicity. In conclusion, RM could inhibited the formation of C. albicans biofilm in vitro, but it had no fungicidal effect on planktonic C. albicans cells, and the anti-biofilm mechanism may be related to the cAMP pathway.
-
[
Anal Chem,
2021]
The use of quality control samples in metabolomics ensures data quality, reproducibility, and comparability between studies, analytical platforms, and laboratories. Long-term, stable, and sustainable reference materials (RMs) are a critical component of the quality assurance/quality control (QA/QC) system; however, the limited selection of currently available matrix-matched RMs reduces their applicability for widespread use. To produce an RM in any context, for any matrix that is robust to changes over the course of time, we developed iterative batch averaging method (IBAT). To illustrate this method, we generated 11 independently grown <i>Escherichia coli</i> batches and made an RM over the course of 10 IBAT iterations. We measured the variance of these materials by nuclear magnetic resonance (NMR) and showed that IBAT produces a stable and sustainable RM over time. This <i>E. coli</i> RM was then used as a food source to produce a <i>Caenorhabditis elegans</i> RM for a metabolomics experiment. The metabolite extraction of this material, alongside 41 independently grown individual <i>C. elegans</i> samples of the same genotype, allowed us to estimate the proportion of sample variation in preanalytical steps. From the NMR data, we found that 40% of the metabolite variance is due to the metabolite extraction process and analysis and 60% is due to sample-to-sample variance. The availability of RMs in untargeted metabolomics is one of the predominant needs of the metabolomics community that reach beyond quality control practices. IBAT addresses this need by facilitating the production of biologically relevant RMs and increasing their widespread use.
-
[
Elife,
2020]
Ryanodine receptor type I-related myopathies (RYR1-RMs) are a common group of childhood muscle diseases associated with severe disabilities and early mortality for which there are no available treatments. The goal of this study is to identify new therapeutic targets for RYR1-RMs. To accomplish this, we developed a discovery pipeline using nematode, zebrafish, and mammalian cell models. We first performed large-scale drug screens in <i>C. elegans</i> which uncovered 74 hits. Targeted testing in zebrafish yielded positive results for two
p38 inhibitors. Using mouse myotubes, we found that either pharmacological inhibition or siRNA silencing of
p38 impaired caffeine-induced Ca<sup>2+</sup> release from wild type cells while promoting intracellular Ca<sup>2+</sup> release in <i>Ryr1</i> knockout cells. Lastly, we demonstrated that
p38 inhibition blunts the aberrant temperature-dependent increase in resting Ca<sup>2+</sup> in myotubes from an RYR1-RM mouse model. This unique platform for RYR1-RM therapy development is potentially applicable to a broad range of neuromuscular disorders.
-
[
J Environ Sci (China),
2011]
Sulfamethoxazole (SMX) is one of the most common detected antibiotics in the environment. In order to study whether SMX can affect behavior and growth and whether these effects could be transferred to the progeny, Caenorhabditis elegans was exposed at environmentally relevant concentrations for 24, 48, 72 and 96 hr, respectively. After exposure, the exposed parent generation (P0) was measured for behavior and growth indicators, which were presented as percentage of controls (POC). Then their corresponding unexposed progeny (F1) was separated and measured for the same indicators. The lowest POC for P0 after 96 hr-exposure at 100 mg/L were 37.8%, 12.7%, 45.8% and 70.1% for body bending frequency (BBF), reversal movement (RM), Omega turns (OT) and body length (BL), respectively. And F1 suffered defects with the lowest POC as 55.8%, 24.1%, 48.5% and 60.7% for BBF, RM, OT and BL, respectively. Defects in both P0 and F1 showed a time- and concentration-dependent fashion and behavior indicators showed better sensitivity than growth indicator. The observed effects on F1 demonstrated the transferable properties of SMX. Defects of SMX at environmental concentrations suggested that it is necessary to perform further systematical studies on its ecological risk in actual conditions.
-
[
J Ethnopharmacol,
2001]
Five aqueous extracts from three plant species, i.e., dried husks (HX), dried seeds (SX) and dried leaves (LX) of Xylocarpus granatum (Meliaceae), dried stems (ST) of Tinospora crispa (Menispermaceae) and dried leaves (LA) of Andrographis paniculata (Acanthaceae) were tested in vitro against adult worms of subperiodic Brugia malayi. The relative movability (RM) value of the adult worms over the 24-h observation period was used as a measure of the antifilarial activity of the aqueous extracts. SX extract of X. granatum demonstrated the strongest activity, followed by the LA extract of A. paniculata, ST extract of T. crispa, HX extract and LX extract of X. granatum.
-
[
Mech Ageing Dev,
1993]
The Gompertz mortality function, Rm = R0e alpha t, is frequently used to describe changes in mortality rate (Rm) with time (t). In this paper, four methods for determining the best fit values of the two parameters, R0 and alpha, are compared. Three of the four methods use the Gompertz mortality function with mortality rate estimates derived from survival data to determine the best fit values for the two parameters. All three confront problems. The fourth method uses the Gompertz survival function, which can be derived from the Gompertz mortality function and which allows one to use survival data directly. It thereby avoids the problems and generally gives the best estimates for the two parameters. The use of the mortality function, with mortality rate estimates, confronts four distinct problems. One of these is caused by time intervals when zero organisms die. A second is caused by errors produced in estimating mortality rates from survival data. If too high a proportion of a population die in a given time interval, the mortality rate estimates are too low. A third problem is the sensitivity of the mortality-equation-based analyses to values at the end of the survival curve, where scatter in mortality values tends to be greater. A final problem occurs when time intervals greater than one time unit (day, week, year, etc.) are used in the analysis. Such problems with the use of mortality rates to estimate parameter values are revealed when the calculated parameters are used to produce a survival curve, or when known values of R0 and alpha are used to generate survival data. This paper introduces a non-linear regression analysis, using a Simplex algorithm to fit parameters R0 and alpha in the Gompertz Survival function and concludes that it gives more reliable and consistent results with a variety of data than do three methods that use the mortality function.
-
[
J Theor Biol,
2019]
There are potential interactions between introns and their corresponding coding sequences (CDSs) in ribosomal protein genes that have been proposed by our group and the interactions are achieved by sequence matches between the two kinds of sequences. Here, the optimal matching relations between mature mRNAs and their corresponding introns in Caenorhabditis elegans (C.elegans) were investigated by improved Smith-Waterman local alignment software. Our results showed that the remarkably matched regions appear in the untranslated regions (UTRs) of mRNAs, especially in the 3' UTR. The optimal matched segments (OMSs) are highly organized segments. In addition, the optimal matching relations were analysed between mature mRNAs and other introns. The matching strengths in the UTRs are clearly lower than those in their corresponding introns. Our studies indicate that there are potential interactions between mature mRNAs and their corresponding introns and the post-spliced introns should have other novel functions in the gene expression process.
-
[
Am J Hum Genet,
2003]
Dyggve-Melchior-Clausen dysplasia (DMC) and Smith-McCort dysplasia (SMC) are similar, rare autosomal recessive osteochondrodysplasias. The radiographic features and cartilage histology in DMC and SMC are identical. However, patients with DMC exhibit significant developmental delay and mental retardation, the major features that distinguish the two conditions. Linkage studies localized the SMC and DMC disease genes to chromosome 18q12-21.1, providing evidence suggesting that they are allelic disorders. Sequence analysis of the coding exons of the FLJ90130 gene, a highly evolutionarily conserved gene within the recombination interval defined in the linkage study, identified mutations in SMC and DMC patients. The affected individuals in two consanguinous DMC families were homozygous for a stop codon mutation and a frameshift mutation, respectively, demonstrating that DMC represents the FLJ90130-null phenotype. The data confirm the hypothesis that SMC and DMC are allelic disorders and identify a gene necessary for normal skeletal development and brain function.
-
[
Genetics,
2018]
Modern experimental techniques, such as whole-genome sequencing and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 endogenous genome editing, are enabling researchers to identify and further characterize the roles of proteins that were previously thought of as well defined. In the December 2016 issue of GENETICS, an article by Jaramillo-Lambert et al. identified a new role for the enzyme topoisomerase II in Caenorhabditis elegans male meiosis. This Primer article is designed to provide essential background information on C. elegans spermatogenesis and the relevant scientific techniques that will assist students and instructors in their understanding and discussion of the related article.Related article in GENETICS: Jaramillo-Lambert, A., A. S. Fabritius A. S., T. J. Hansen T. J., H. E. Smith H. E., and A. Golden A., 2016The identification of a novel mutant allele of topoisomerase II in Caenorhabditis elegans reveals a unique role in chromosome segregation during spermatogenesis. Genetics204: 1407-1422.