-
[
Nanotoxicology,
2019]
An adverse outcome pathway (AOP) is a framework that organizes the mechanistic or predictive relationships between molecular initiating events (MIEs), key events (KEs), and adverse outcomes (AOs). Previously, we intensively investigated the molecular mechanism that underlies toxicity caused by AgNPs in the nematode Caenorhabditis elegans. Using transcriptomics, functional genetics, and various molecular/biochemical tools, we identified oxidative stress as the major mechanism underlying toxicity and reproduction failure as the outcome. With this information, here we conducted a case study of building an AOP to link oxidative stress with reproductive toxicity. To validate this AOP, we filled the gaps by conducting further experiments on its elements, such as NADPH oxidase, ROS formation, PMK-1 P38 MAPK activation, HIF-1 activation, mitochondrial damage, DNA damage, and apoptosis. The establishment of a causal link between the MIE and AO is critical for the construction of an AOP. Therefore, causal relationships between each KE and AO were verified by using functional genetic mutants of each KE. By combining these experimental data with our previously published results, we established causal relationships between the MIE, KEs, and AO using a Bayesian network (BN) model, culminating in an AOP entitled 'NADPH oxidase and P38 MAPK activation leading to reproductive failure in C. elegans ( https://aopwiki.org/aops/207)' . Overall, our approach shows that an AOP can be developed using existing data and further experiments can be conducted to fill the gaps between the MIE, KEs, and the AO. This study also shows that BN modeling has the potential to identify causal relationships in an AOP.
-
[
J Biomol Screen,
2005]
G-protein-coupled receptors (GPCRs) activate heterotrimeric G-proteins (G(i)-, G(s)-, G(q)-, or G(12)-like) to generate specific intracellular responses, depending on the receptor/G-protein coupling. The aim was to enable a majority of GPCRs to generate a predetermined output by signaling through a single G-protein-supported pathway. The authors focused on calcium responses as the output, then engineered Galpha(q) to promote promiscuous receptor interactions. Starting with a human Galpha(q) containing 5 Galpha(z) residues in the C-terminal receptor recognition domain (hGalpha(q/z5)), they evaluated agonist-stimulated calcium responses for 33 diverse GPCRs (G(i)-, G(s)-, and G(q)-coupled) and found 20 of 33 responders. In parallel, they tested Caenorhabditis elegans Galpha(q) containing 5 or 9 C-terminal Galpha(z) residues (cGalpha(q/z5), cGalpha(q/z9)). Signal detection was enhanced with cGalpha(q/z5) and cGalpha(q/z9) (yielding 25/33 and 26/33 responders, respectively). In a separate study of Galpha(s)-coupled receptors, the authors compared hGalpha(q/s5) versus hGalpha(q/s9), cGalpha(q/s9), andcGalphaq/s21 and observed optimal function with cGalpha(q/s9). Cotransfection of an engineered Galpha(q) "cocktail" (cGalpha(q/z5) plus cGalpha(q/s9)) provided a powerful and efficient screening platform. When the chimeras included N-terminal myristoylation sites (to promote membrane localization), calcium responses were sustained or improved, depending on the receptor. This approach toward a "universal functional assay" is particularly useful for orphan GPCRs whose signaling pathways are unknown.
-
[
J Theor Biol,
2019]
There are potential interactions between introns and their corresponding coding sequences (CDSs) in ribosomal protein genes that have been proposed by our group and the interactions are achieved by sequence matches between the two kinds of sequences. Here, the optimal matching relations between mature mRNAs and their corresponding introns in Caenorhabditis elegans (C.elegans) were investigated by improved Smith-Waterman local alignment software. Our results showed that the remarkably matched regions appear in the untranslated regions (UTRs) of mRNAs, especially in the 3' UTR. The optimal matched segments (OMSs) are highly organized segments. In addition, the optimal matching relations were analysed between mature mRNAs and other introns. The matching strengths in the UTRs are clearly lower than those in their corresponding introns. Our studies indicate that there are potential interactions between mature mRNAs and their corresponding introns and the post-spliced introns should have other novel functions in the gene expression process.
-
[
Am J Hum Genet,
2003]
Dyggve-Melchior-Clausen dysplasia (DMC) and Smith-McCort dysplasia (SMC) are similar, rare autosomal recessive osteochondrodysplasias. The radiographic features and cartilage histology in DMC and SMC are identical. However, patients with DMC exhibit significant developmental delay and mental retardation, the major features that distinguish the two conditions. Linkage studies localized the SMC and DMC disease genes to chromosome 18q12-21.1, providing evidence suggesting that they are allelic disorders. Sequence analysis of the coding exons of the FLJ90130 gene, a highly evolutionarily conserved gene within the recombination interval defined in the linkage study, identified mutations in SMC and DMC patients. The affected individuals in two consanguinous DMC families were homozygous for a stop codon mutation and a frameshift mutation, respectively, demonstrating that DMC represents the FLJ90130-null phenotype. The data confirm the hypothesis that SMC and DMC are allelic disorders and identify a gene necessary for normal skeletal development and brain function.
-
[
Genetics,
2018]
Modern experimental techniques, such as whole-genome sequencing and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 endogenous genome editing, are enabling researchers to identify and further characterize the roles of proteins that were previously thought of as well defined. In the December 2016 issue of GENETICS, an article by Jaramillo-Lambert et al. identified a new role for the enzyme topoisomerase II in Caenorhabditis elegans male meiosis. This Primer article is designed to provide essential background information on C. elegans spermatogenesis and the relevant scientific techniques that will assist students and instructors in their understanding and discussion of the related article.Related article in GENETICS: Jaramillo-Lambert, A., A. S. Fabritius A. S., T. J. Hansen T. J., H. E. Smith H. E., and A. Golden A., 2016The identification of a novel mutant allele of topoisomerase II in Caenorhabditis elegans reveals a unique role in chromosome segregation during spermatogenesis. Genetics204: 1407-1422.
-
[
Am J Hum Genet,
2002]
Smith-McCort dysplasia is a rare autosomal recessive osteochondrodysplasia characterized by short limbs and a short trunk with a barrel-shaped chest. The radiographic phenotype includes platyspondyly, generalized abnormalities of the epiphyses and metaphyses, and a distinctive lacy appearance of the iliac crest. We performed a genomewide scan in a consanguineous family from Guam and found evidence of linkage to loci on chromosome 18q12. Analysis of a second, smaller family was also consistent with linkage to this region, producing a maximum combined two-point LOD score of 3.04 at a recombination fraction of 0 for the marker at locus D18S450. A 10.7-cM region containing the disease gene was defined by recombination events in two affected individuals in the larger family. Furthermore, all affected children in the larger family were homozygous for a subset of marker loci within this region, defining a 1.5-cM interval likely to contain the defective gene. Analysis of three small, unrelated families with Dyggve-Melchior-Clausen syndrome, a radiographically identical disorder with the additional clinical finding of mental retardation, provided evidence of linkage to the same region, a result consistent with the hypothesis that the two disorders are allelic.
-
[
PLoS One,
2009]
BACKGROUND: Highly parallel sequencing technologies have become important tools in the analysis of sequence polymorphisms on a genomic scale. However, the development of customized software to analyze data produced by these methods has lagged behind. METHODS/PRINCIPAL FINDINGS: Here I describe a tool, 'galign', designed to identify polymorphisms between sequence reads obtained using Illumina/Solexa technology and a reference genome. The 'galign' alignment tool does not use Smith-Waterman matrices for sequence comparisons. Instead, a simple algorithm comparing parsed sequence reads to parsed reference genome sequences is used. 'galign' output is geared towards immediate user application, displaying polymorphism locations, nucleotide changes, and relevant predicted amino-acid changes for ease of information processing. To do so, 'galign' requires several accessory files easily derived from an annotated reference genome. Direct sequencing as well as in silico studies demonstrate that 'galign' provides lesion predictions comparable in accuracy to available prediction programs, accompanied by greater processing speed and more user-friendly output. We demonstrate the use of 'galign' to identify mutations leading to phenotypic consequences in C. elegans. CONCLUSION/SIGNIFICANCE: Our studies suggest that 'galign' is a useful tool for polymorphism discovery, and is of immediate utility for sequence mining in C. elegans.
-
[
Biometrics,
2011]
Next-generation sequencing technologies are poised to revolutionize the field of biomedical research. The increased resolution of these data promise to provide a greater understanding of the molecular processes that control the morphology and behavior of a cell. However, the increased amounts of data require innovative statistical procedures that are powerful while still being computationally feasible. In this article, we present a method for identifying small RNA molecules, called miRNAs, which regulate genes by targeting their mRNAs for degradation or translational repression. In the first step of our modeling procedure, we apply an innovative dynamic linear model that identifies candidate miRNA genes in high-throughput sequencing data. The model is flexible and can accurately identify interesting biological features while accounting for both the read count, read spacing, and sequencing depth. Additionally, miRNA candidates are also processed using a modified Smith-Waterman sequence alignment that scores the regions for potential RNA hairpins, one of the defining features of miRNAs. We illustrate our method on simulated datasets as well as on a small RNACaenorhabditis elegansdataset from the Illumina sequencing platform. These examples show that our method is highly sensitive for identifying known and novel miRNA genes.
-
[
J Theor Biol,
2015]
We propose a mechanism that there are matching relations between mRNA sequences and corresponding post-spliced introns, and introns play a significant role in the process of gene expression. In order to reveal the sequence matching features, Smith-Waterman local alignment method is used on C. elegans mRNA sequences to obtain optimal matched segments between exon-exon sequences and their corresponding introns. Distribution characters of matching frequency on exon-exon sequences and sequence characters of optimal matched segments are studied. Results show that distributions of matching frequency on exon-exon junction region have obvious differences, and the exon boundary is revealed. Distributions of the length and matching rate of optimal matched segments are consistent with sequence features of siRNA and miRNA. The optimal matched segments have special sequence characters compared with their host sequences. As for the first introns and long introns, matching frequency values of optimal matched segments with high GC content, rich CG dinucleotides and high CG values show the minimum distribution in exon junction complex (EJC) binding region. High CG values in optimal matched segments are main characters in distinguishing EJC binding region. Results indicate that EJC and introns have competitive and cooperative relations in the process of combining on protein coding sequences. Also intron sequences and protein coding sequences do have concerted evolution relations.
-
[
J Biol Chem,
2001]
Rab proteins are small GTPases that are essential elements of the protein transport machinery of eukaryotic cells. Each round of membrane transport requires a cycle of Rab protein nucleotide binding and hydrolysis. We have recently characterized a protein, Yip1p, which appears to play a role in Rab-mediated membrane transport in Saccharomyces cerevisiae. In this study, we report the identification of a Yip1p-associated protein, Yop1p. Yop1p is a membrane protein with a hydrophilic region at its N terminus through which it interacts specifically with the cytosolic domain of Yip1p. Yop1p could also be coprecipitated with Rab proteins from total cellular lysates. The TB2 gene is the human homolog of Yop1p (Kinzler, K. W., Nilbert, M. C., Su, L.-K., Vogelstein, B., Bryan, T. M., Levey, D. B., Smith, K. J., Preisinger, A. C., Hedge, P., McKechnie, D., Finniear, R., Markham, A., Groffen, J., Boguski, M. S., Altschul, S. F., Horii, A., Ando, H. M., Y., Miki, Y., Nishisho, I., and Nakamura, Y. (1991) Science 253, 661-665). Our data demonstrate that Yop1p negatively regulates cell growth. Disruption of YOP1 has no apparent effect on cell viability, while overexpression results in cell death, accumulation of internal cell membranes, and a block in membrane traffic. These results suggest that Yop1p acts in conjunction with Yip1p to mediate a common step in membrane traffic.