-
[
Mol Genet Genomics,
2020]
Forward genetics is a powerful tool to unravel molecular mechanisms of diverse biological processes. The success of genetic screens primarily relies on the ease of genetic manipulation of an organism and the availability of a plethora of genetic tools. The roundworm Caenorhabditis elegans has been one of the favorite models for genetic studies due to its hermaphroditic lifestyle, ease of maintenance, and availability of various genetic manipulation tools. The strength of C. elegans genetics is highlighted by the leading role of this organism in the discovery of several conserved biological processes. In this review, the principles and strategies for forward genetics in C. elegans are discussed. Further, the recent advancements that have drastically accelerated the otherwise time-consuming process of mutation identification, making forward genetic screens a method of choice for understanding biological functions, are discussed. The emphasis of the review has been on providing practical and conceptual pointers for designing genetic screens that will identify mutations, specifically disrupting the biological processes of interest.
-
[
Curr Opin Neurobiol,
2019]
The nervous and immune systems use bi-directional communication to control host responses against microbial pathogens. Recent studies at the interface of the two systems have highlighted important roles of the nervous system in the regulation of both microbicidal pathways and pathogen avoidance behaviors. Studies on the neural circuits in the simple model host Caenorhabditis elegans have significantly improved our understanding of the roles of conserved neural mechanisms in controlling innate immunity. Moreover, behavioral studies have advanced our understanding of how the nervous system may sense potential pathogens and consequently elicit pathogen avoidance, reducing the risk of infection. In this review, we discuss the neural circuits that regulate both behavioral immunity and molecular immunity in C. elegans.
-
[
Int J Parasitol,
1997]
Direct microscopy is widely used for the diagnosis of parasitic infections although it often requires an experienced microscopist for accurate diagnosis, is labour intensive and not very sensitive. In order to overcome some of these shortcomings, molecular or nucleic acid-based diagnostic methods for parasitic infections have been developed over the past 12 years. The parasites which have been studied with these techniques include the human Plasmodia, Leishmania, the trypanosomes, Toxoplasma gondii, Entamoeba histolytica, Giardia, Trichomonas vaginalis, Cryptosporidium parvum, Taenia, Echinococcus, Brugia malayi, Wuchereria bancrofti, Loa loa and Onchocerca volvulus. Early methods, which involved hybridisation of specific probes (radiolabelled and non-radiolabelled) to target deoxyribonucleic acid (DNA), have been replaced by more sensitive polymerase chain reaction (PCR)-based assays. Other methods, such as PCR-hybridisation assays, PCR-restriction fragment length polymorphism (PCR-RFLP) assays and random amplified polymorphic DNA (RAPD) analysis have also proved valuable for epidemiological studies of parasites. The general principles and development of DNA-based methods for diagnosis and epidemiological studies will be described, with particular reference to malaria. These methods will probably not replace current methods for routine diagnosis of parasitic infections in developing countries where parasitic diseases are endemic, due to high costs. However, they will be extremely useful for genotyping parasite strains and vectors, and for accurate parasite detection in both humans and vectors during epidemiological studies.
-
[
Future Med Chem,
2010]
Filariasis is caused by thread-like nematode worms, classified according to their presence in the vertebrate host. The cutaneous group includes Onchocerca volvulus, Loa loa and Mansonella streptocerca; the lymphatic group includes Wuchereria bancrofti, Brugia malayi and Brugia timori and the body cavity group includes Mansonella perstans and Mansonella ozzardi. Lymphatic filariasis, a mosquito-borne disease, is one of the most prevalent diseases in tropical and subtropical countries and is accompanied by a number of pathological conditions. In recent years, there has been rapid progress in filariasis research, which has provided new insights into the pathogenesis of filarial disease, diagnosis, chemotherapy, the host-parasite relationship and the genomics of the parasite. Together, these insights are assisting the identification of novel drug targets and the discovery of antifilarial agents and candidate vaccine molecules. This review discusses the antifilarial activity of various chemical entities, the merits and demerits of antifilarial drugs currently in use, their mechanisms of action, in addition to antifilarial drug targets and their validation.
-
[
Cell Cycle,
2006]
The relationship between fever and microbial infections has been known for a number of years, as well as several key mediators involved in its elicitation. However, the mechanisms by which fever confers protection to infected hosts are less clear. The nematode Caenorhabditis elegans, which has been extensively used in recent years to study microbial infections and innate immune responses, has recently been used to study the effect of increased temperature in immunity. Upon heat shock exposure, nematodes become more resistant to Pseudomonas aeruginosa and the enhanced resistance to the pathogen requires heat shock transcription factor 1 (HSF-1) and a system of small and 90 kDa heat shock proteins (HSPs). Experiments using additional Gram negative and Gram positive pathogens show that HSF-1 is part of a multipathogen defense pathway. In addition, C. elegans innate immunity can be activated enhancing HSF-1 activity by directly overexpressing HSF-1 or by overexpressing DAF-16, which is a forkhead transcription factor that acts upstream HSF-1 in aging and immunity. Blocking the inhibitory signal of the DAF-2 insulin like receptor, which acts upstream DAF-16, also results in an enhanced HSF-1 dependent immunity. In addition, mutations that affect DAF-21, C. elegans homologue of Hsp90 which forms an inhibitory complex with HSF-1, appear to boost immunity by activating the HSF-1 pathway. The role of the HSF-1 pathway in innate immunity and immunosenescence is discussed.
-
[
Free Radic Biol Med,
2013]
Reactive oxygen species (ROS) are continuously generated within living systems and the inability to manage ROS load leads to elevated oxidative stress and cell damage. Oxidative stress is coupled to the oxidative degradation of lipid membranes, also known as lipid peroxidation. This process generates over 200 types of aldehydes, many of which are highly reactive and toxic. Aldehyde dehydrogenases (ALDHs) metabolize endogenous and exogenous aldehydes and thereby mitigate oxidative/electrophilic stress in prokaryotic and eukaryotic organisms. ALDHs are found throughout the evolutionary gamut, from single-celled organisms to complex multicellular species. Not surprisingly, many ALDHs in evolutionarily distant, and seemingly unrelated, species perform similar functions, including protection against a variety of environmental stressors such as dehydration and ultraviolet radiation. The ability to act as an "aldehyde scavenger" during lipid peroxidation is another ostensibly universal ALDH function found across species. Upregulation of ALDHs is a stress response in bacteria (environmental and chemical stress), plants (dehydration, salinity, and oxidative stress), yeast (ethanol exposure and oxidative stress), Caenorhabditis elegans (lipid peroxidation), and mammals (oxidative stress and lipid peroxidation). Recent studies have also identified ALDH activity as an important feature of cancer stem cells. In these cells, ALDH expression helps abrogate oxidative stress and imparts resistance against chemotherapeutic agents such as oxazaphosphorine, taxane, and platinum drugs. The ALDH superfamily represents a fundamentally important class of enzymes that contributes significantly to the management of electrophilic/oxidative stress within living systems. Mutations in various ALDHs are associated with a variety of pathological conditions in humans, highlighting the fundamental importance of these enzymes in physiological and pathological processes.
-
[
Philos Trans R Soc Lond B Biol Sci,
2024]
The Human Microbiome Project was a research programme that successfully identified associations between microbial species and healthy or diseased individuals. However, a major challenge identified was the absence of model systems for studying host-microbiome interactions, which would increase our capacity to uncover molecular interactions, understand organ-specificity and discover new microbiome-altering health interventions. <i>Caenorhabditis elegans</i> has been a pioneering model organism for over 70 years but was largely studied in the absence of a microbiome. Recently, ecological sampling of wild nematodes has uncovered a large amount of natural genetic diversity as well as a slew of associated microbiota. The field has now explored the interactions of <i>C. elegans</i> with its associated gut microbiome, a defined and non-random microbial community, highlighting its suitability for dissecting host-microbiome interactions. This core microbiome is being used to study the impact of host genetics, age and stressors on microbiome composition. Furthermore, single microbiome species are being used to dissect molecular interactions between microbes and the animal gut. Being amenable to health altering genetic and non-genetic interventions, <i>C. elegans</i> has emerged as a promising system to generate and test new hypotheses regarding host-microbiome interactions, with the potential to uncover novel paradigms relevant to other systems. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
-
[
International Journal of Developmental Biology,
1998]
Pleiotropy , a situation in which a single gene influences multiple phenotypic tra its, can arise in a variety of ways. This paper discusses possible underlying mechanisms and proposes a classification of the various phenomena involved.
-
[
Curr Biol,
2003]
A novel protein in Caenorhabditis elegans, SAS-4, is a component of centrioles and is required for centriole duplication. Depletion of SAS-4 results in stunted centrioles and a smaller centrosome, suggesting a link to organelle size control.
-
[
Curr Biol,
1997]
An increasing body of evidence indicates that
p53, the product of a tumour suppressor gene, has a role in development - could this developmental role have provided the primary driving force in the evolution of a protein best known as a stress-response integrator?