[
Subcell Biochem,
2012]
Caenorhabditis elegans provides a simplified, in vivo model system in which to study adherens junctions (AJs) and their role in morphogenesis. The core AJ components-HMR-1/E-cadherin, HMP-2/-catenin and HMP-1/-catenin-were initially identified through genetic screens for mutants with body axis elongation defects. In early embryos, AJ proteins are found at sites of contact between blastomeres, and in epithelial cells AJ proteins localize to the multifaceted apical junction (CeAJ)-a single structure that combines the adhesive and barrier functions of vertebrate adherens and tight junctions. The apically localized polarity proteins PAR-3 and PAR-6 mediate formation and maturation of junctions, while the basolaterally localized regulator LET-413/Scribble ensures that junctions remain apically positioned. AJs promote robust adhesion between epithelial cells and provide mechanical resistance for the physical strains of morphogenesis. However, in contrast to vertebrates, C. elegans AJ proteins are not essential for general cell adhesion or for epithelial cell polarization. A combination of conserved and novel proteins localizes to the CeAJ and works together with AJ proteins to mediate adhesion.
[
Genes Dev,
1999]
A wide variety of extracellular stimuli induce signal transduction through receptors coupled to heterotrimeric G proteins, which consist of alpha, beta, and gamma subunits (Gilman 1987). The G alpha subunit has guanine nucleotide binding and GTP hydrolysis activities. Based on function and amino acid sequence homology, the Galpha, G alph i/o, G alpha q, and G alpha 12 (Simon et al. 1991; Hepler and Gilman 1992). As exemplified by the responsiveness of our five senses to environmental stimuli, signaling mediated by trimeric G proteins is often extremely rapid and transient. A key step in achieving such a raid response is the ability of the G alpha subunit to switch between it GDP- and GTP-bound forms. The nucleotide binding state of G alpha is regulated at both the GDP dissociation and GTP hydrolysis steps. Stimulation of receptors by agonists leads to a conformational change in the receptors which can function as a guanine nucleotide exchange factor to stimulate a rapid dissociation of GDP from the inactive G alpha. The nucleotide-free G alpha is then available to bind GTP, leading to the dissociation of G alpha from the G beta gamma heterodimer. Both the G alpha and G beat gamma subunits can interact with and regulate downstream effectors that include adenylyl cyclase, phospholipase C, and ion channels (Gilman 1987; Birnbaumer 1992).