[
Antioxidants (Basel),
2020]
The aim of this study was, firstly, to evaluate the phenol profile of thistle (<i>Cirsium japonicum</i>, CJ) by High performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS), dried by different methods (90 C hot-air, 70 C hot-air, shade-, and freeze-drying). Secondly, we aimed to evaluate the relationship between phenolic compounds content and antioxidant properties. CJ contained chlorogenic acid, linarin, and pectolinarin. Total phenolic contents of CJ significantly decreased under hot-air-drying condition, especially chlorogenic acid contents in CJ have been reduced by 85% and 60% for 90 C and 70 C hot-air-drying, respectively. We evaluated the protective effect on adrenal pheochromocytoma (PC12) cells and <i>Caenorhabditis elegans</i> using shade-dried CJ, which has the largest phenolic contents and the strongest antioxidant property. CJ-treated PC 12 cells dose-dependently exhibited the protective effects against reactive oxygen species (ROS), while cell viability increases, lactate dehydrogenase release decreases, and ROS formation decreases. Furthermore, CJ has also shown protection against ROS in <i>C. elegans.</i> Consequently, CJ contributed to lifespan extension under ROS stress without influencing the physiological growth.
[
Methods Mol Biol,
2015]
Optogenetics was introduced as a new technology in the neurosciences about a decade ago (Zemelman et al., Neuron 33:15-22, 2002; Boyden et al., Nat Neurosci 8:1263-1268, 2005; Nagel et al., Curr Biol 15:2279-2284, 2005; Zemelman et al., Proc Natl Acad Sci USA 100:1352-1357, 2003). It combines optics, genetics, and bioengineering to render neurons sensitive to light, in order to achieve a precise, exogenous, and noninvasive control of membrane potential, intracellular signaling, network activity, or behavior (Rein and Deussing, Mol Genet Genomics 287:95-109, 2012; Yizhar et al., Neuron 71:9-34, 2011). As C. elegans is transparent, genetically amenable, has a small nervous system mapped with synapse resolution, and exhibits a rich behavioral repertoire, it is especially open to optogenetic methods (White et al., Philos Trans R Soc Lond B Biol Sci 314:1-340, 1986; De Bono et al., Optogenetic actuation, inhibition, modulation and readout for neuronal networks generating behavior in the nematode Caenorhabditis elegans, In: Hegemann P, Sigrist SJ (eds) Optogenetics, De Gruyter, Berlin, 2013; Husson et al., Biol Cell 105:235-250, 2013; Xu and Kim, Nat Rev Genet 12:793-801, 2011). Optogenetics, by now an "exploding" field, comprises a repertoire of different tools ranging from transgenically expressed photo-sensor proteins (Boyden et al., Nat Neurosci 8:1263-1268, 2005; Nagel et al., Curr Biol 15:2279-2284, 2005) or cascades (Zemelman et al., Neuron 33:15-22, 2002) to chemical biology approaches, using photochromic ligands of endogenous channels (Szobota et al., Neuron 54:535-545, 2007). Here, we will focus only on optogenetics utilizing microbial rhodopsins, as these are most easily and most widely applied in C. elegans. For other optogenetic tools, for example the photoactivated adenylyl cyclases (PACs, that drive neuronal activity by increasing synaptic vesicle priming, thus exaggerating rather than overriding the intrinsic activity of a neuron, as occurs with rhodopsins), we refer to other literature (Weissenberger et al., J Neurochem 116:616-625, 2011; Steuer Costa et al., Photoactivated adenylyl cyclases as optogenetic modulators of neuronal activity, In: Cambridge S (ed) Photswitching proteins, Springer, New York, 2014). In this chapter, we will give an overview of rhodopsin-based optogenetic tools, their properties and function, as well as their combination with genetically encoded indicators of neuronal activity. As there is not "the" single optogenetic experiment we could describe here, we will focus more on general concepts and "dos and don'ts" when designing an optogenetic experiment. We will also give some guidelines on which hardware to use, and then describe a typical example of an optogenetic experiment to analyze the function of the neuromuscular junction, and another application, which is Ca(2+) imaging in body wall muscle, with upstream neuronal excitation using optogenetic stimulation. To obtain a more general overview of optogenetics and optogenetic tools, we refer the reader to an extensive collection of review articles, and in particular to volume 1148 of this book series, "Photoswitching Proteins."