[
Trans R Soc Trop Med Hyg
]
The viability and drug responses of cryopreserved adult Onchocerca have been examined in vitro. Male worms were cryopreserved in liquid nitrogen (-196 degrees C) using ethanediol as a cryoprotectant in a 2-step incubation procedure. After thawing, 85-90% of O. gutturosa males were normally motile. These motile worms were evaluated for viability using 4 measurements (long-term motility/survival in culture; [U-14C]adenine uptake and leakage; glucose utilization; MTT-formazan colorimetry) and were no different from unfrozen controls. Subsequent experiments demonstrated that the motility responses of cryopreserved worms exposed to the antifilarial drugs ivermectin, CGP 6140 and levamisole were virtually identical to unfrozen controls. Some success was also obtained with this technique in cryopreserving O. volvulus males, with 2 thawed specimens surviving in culture for 93 and 106 d respectively. Following collagenase isolation, female worms were cryopreserved in medium +10% serum without protectant at -79 degrees C. A batch of 8 female O. gutturosa were all motile when thawed 14 d later, with a mean survival time (based on 5 specimens) of 71 d (range 60-90). However, a batch of worms transferred from -79 degrees C to -196 degrees C were badly damaged when thawed. Female O. volvulus were cryopreserved at -79 degrees C in Guatemala and sent by air freight on solid CO2 to the UK. Most specimens were active when thawed. Survival of motile specimens ranged from 7 to 272 d in culture. It is concluded that these techniques are of practical value for the storage and transportation of adult Onchocerca.
[
Nanotoxicology,
2019]
An adverse outcome pathway (AOP) is a framework that organizes the mechanistic or predictive relationships between molecular initiating events (MIEs), key events (KEs), and adverse outcomes (AOs). Previously, we intensively investigated the molecular mechanism that underlies toxicity caused by AgNPs in the nematode Caenorhabditis elegans. Using transcriptomics, functional genetics, and various molecular/biochemical tools, we identified oxidative stress as the major mechanism underlying toxicity and reproduction failure as the outcome. With this information, here we conducted a case study of building an AOP to link oxidative stress with reproductive toxicity. To validate this AOP, we filled the gaps by conducting further experiments on its elements, such as NADPH oxidase, ROS formation, PMK-1 P38 MAPK activation, HIF-1 activation, mitochondrial damage, DNA damage, and apoptosis. The establishment of a causal link between the MIE and AO is critical for the construction of an AOP. Therefore, causal relationships between each KE and AO were verified by using functional genetic mutants of each KE. By combining these experimental data with our previously published results, we established causal relationships between the MIE, KEs, and AO using a Bayesian network (BN) model, culminating in an AOP entitled 'NADPH oxidase and P38 MAPK activation leading to reproductive failure in C. elegans ( https://aopwiki.org/aops/207)' . Overall, our approach shows that an AOP can be developed using existing data and further experiments can be conducted to fill the gaps between the MIE, KEs, and the AO. This study also shows that BN modeling has the potential to identify causal relationships in an AOP.
[
Autophagy,
2022]
Macroautophagy/autophagy, an evolutionarily conserved degradation system, serves to clear intracellular components through the lysosomal pathway. Mounting evidence has revealed cytoprotective roles of autophagy; however, the intracellular causes of overactivated autophagy, which has cytotoxic effects, remain elusive. Here we show that sustained proteotoxic stress induced by loss of the <u>RI</u>NG and <u>Ke</u>lch repeat-containing protein C53A5.6/RIKE-1 induces sequestration of LET-363/MTOR complex and overactivation of autophagy, and consequently impairs epithelial integrity in <i>C. elegans</i>. In C53A5.6/RIKE-1-deficient animals, blocking autophagosome formation effectively prevents excessive endosomal degradation, mitigates mislocalization of intestinal membrane components and restores intestinal lumen morphology. However, autophagy inhibition does not affect LET-363/MTOR aggregation in animals with compromised C53A5.6/RIKE-1 function. Improving proteostasis capacity by reducing DAF-2 insulin/IGF1 signaling markedly relieves the aggregation of LET-363/MTOR and alleviates autophagy overactivation, which in turn reverses derailed endosomal trafficking and rescues epithelial morphogenesis defects in C53A5.6/RIKE-1-deficient animals. Hence, our studies reveal that C53A5.6/RIKE-1-mediated proteostasis is critical for maintaining the basal level of autophagy and epithelial integrity.<b>Abbreviations:</b> ACT-5: actin 5; ACTB: actin beta; ALs: autolysosomes; APs: autophagosomes; AJM-1: apical junction molecule; ATG: autophagy related; C. elegans: Caenorhabditis elegans; CPL-1: cathepsin L family; DAF: abnormal dauer formation; DLG-1: Drosophila discs large homolog; ERM-1: ezrin/radixin/moesin; EPG: ectopic P granule; GFP: freen fluorescent protein; HLH-30: helix loop helix; HSP: heat shock protein; LAAT-1: lysosome associated amino acid transporter; LET: lethal; LGG-1: LC3, GABARAP and GATE-16 family; LMP-1: LAMP (lysosome-associated membrane protein) homolog; MTOR: mechanistic target of rapamycin kinase; NUC-1: abnormal nuclease; PEPT-1/OPT-2: Peptide transporter family; PGP-1: P-glycoprotein related; RAB: RAB family; RIKE-1: RING and Kelch repeat-containing protein; SLCF-1: solute carrier family; SQST-1: sequestosome related; SPTL-1: serine palmitoyl transferase family.