-
[
Autophagy,
2018]
SIN3, a transcriptional corepressor has been implicated in varied functions both as transcription activator and repressor. Recent studies associated Sin3 with the macroautophagic/autophagic process as a negative regulator of Atg8 and Atg32. Though the role of SIN3 in autophagy is being explored, little is known about the overall effect of SIN3 deletion on the survival of an organism. In this study using a Caenorhabditis elegans
sin-3(
tm1279);
him-5(
e1490) strain, we demonstrate that under in vivo conditions SIN-3 differentially modulates autophagy and lifespan. We provide evidence that the enhanced autophagy and decreased lifespan observed in
sin-3 deletion mutants is dependent on ROS and intracellular oxidative stress. Inability of the mutant worms to maintain redox balance along with dysregulation of enzymatic antioxidants, depletion of GSH and NADP reserves and elevation of ROS markers compromises the longevity of the worms. It is possible that the enhanced autophagic process observed in
sin-3(
tm1279);
him-5(
e1490) worms is required to compensate for oxidative stress generated in these worms.
-
[
Curr Biol,
2015]
Male worm mating requires
lov-1 and
pkd-2 (homologs of the human polycystic kidney disease genes, PKD1and PKD2), which are expressed in male-specific neurons. Transcriptomic analysis of these neuronsnow catalogs molecules involved in signaling and ectosome biogenesis, with implications for human PKD.
-
[
Colloids Surf B Biointerfaces,
2024]
The maintenance of protein conformation under stressful conditions is one of the prevailing challenges. This has led to a rapid growth in the ingenious protein therapies, in the past few decades, prioritizing the investigation of the structure and function of proteins in novel environments. Ionic Liquids (ILs) are currently dominating the biomedical industry, by endowing great solubility and stability to bio-molecules, especially proteins. Recently, researchers have devoted their attention towards the artificial chaperone activity of several classes of ILs. Thus, comprehending the long-term as well as momentary stability of protein conformation in IL formulations is an absolute necessity. In this context, we present the activity of quinoline-based ionic liquids (ILs) as artificial cheperones against time-dependent, self induced fibril formation in Bovine Serum Albumin (BSA). Herein, a series of quinoline-based ILs were synthesized and characterized. The structural and morphological changes induced in BSA in the presence and absence of these ILs are corroborated using several spectroscopic measurements and in-silico studies. The anti-microbial and antibiofilm activity of these compounds demonstrating their medicinal properties is substantiated in this study. Furthermore, the present research also gives an account of the toxicity of these compounds under in vivo conditions, using C. elegans as the model organism.
-
[
Biochemistry,
2012]
Decapping scavenger (DcpS) enzymes catalyze the cleavage of a residual cap structure following 3' 5' mRNA decay. Some previous studies suggested that both m(7)GpppG and m(7)GDP were substrates for DcpS hydrolysis. Herein, we show that mononucleoside diphosphates, m(7)GDP (7-methylguanosine diphosphate) and m(3)(2,2,7)GDP (2,2,7-trimethylguanosine diphosphate), resulting from mRNA decapping by the Dcp1/2 complex in the 5' 3' mRNA decay, are not degraded by recombinant DcpS proteins (human, nematode, and yeast). Furthermore, whereas mononucleoside diphosphates (m(7)GDP and m(3)(2,2,7)GDP) are not hydrolyzed by DcpS, mononucleoside triphosphates (m(7)GTP and m(3)(2,2,7)GTP) are, demonstrating the importance of a triphosphate chain for DcpS hydrolytic activity. m(7)GTP and m(3)(2,2,7)GTP are cleaved at a slower rate than their corresponding dinucleotides (m(7)GpppG and m(3)(2,2,7)GpppG, respectively), indicating an involvement of the second nucleoside for efficient DcpS-mediated digestion. Although DcpS enzymes cannot hydrolyze m(7)GDP, they have a high binding affinity for m(7)GDP and m(7)GDP potently inhibits DcpS hydrolysis of m(7)GpppG, suggesting that m(7)GDP may function as an efficient DcpS inhibitor. Our data have important implications for the regulatory role of m(7)GDP in mRNA metabolic pathways due to its possible interactions with different cap-binding proteins, such as DcpS or eIF4E.
-
[
J Infect Dis,
2015]
BACKGROUND: Elimination of onchocerciasis and lymphatic filariasis is targeted for 2020. Given the coincident Loa loa infections in Central Africa and the potential for drug resistance development, the need for new microfilaricides and macrofilaricides has never been greater. With the genomes of L. loa, Onchocerca volvulus, Wuchereria bancrofti, and Brugia malayi available, new drug targets have been identified. METHODS: The effects of the tyrosine kinase inhibitors imatinib, nilotinib, and dasatinib on B. malayi adult males, adult females, L3 larvae, and microfilariae were assessed using a wide dose range (0-100 M) in vitro. RESULTS: For microfilariae, median inhibitory concentrations (IC50 values) on day 6 were 6.06 M for imatinib, 3.72 M for dasatinib, and 81.35 M for nilotinib; for L3 larvae, 11.27 M, 13.64 M, and 70.98 M, respectively; for adult males, 41.6 M, 3.87 M, and 68.22 M, respectively; and for adult females, 42.89 M, 9.8 M, and >100 M, respectively. Three-dimensional modeling suggests how these tyrosine kinase inhibitors bind and inhibit filarial protein activity. CONCLUSIONS: Given the safety of imatinib in humans, plans are underway for pilot clinical trials to assess its efficacy in patients with filarial infections.
-
[
Aging (Albany NY),
2018]
Aging/senescence includes not just decline in lifespan but also etiologies of age associated morbidities which are inadequately understood. Extensive research has been undertaken to delineate the pathways and generate mutants with extended lifespan. However, little is known about the health status of these long lived mutants in the background of important genetic perturbations. <i>Caenorhabditis elegans</i> is one of the leading <i>in vivo</i> model organisms to study aging. Deletion of SIN-3, a transcription coregulator in <i>C. elegans</i> has been shown to reduce the lifespan of the mutant worms by half as compared to the wild-type and isogenic controls. The current study focuses on the effect of SIN-3 deletion on the healthspan of the worms. We find that not only are <i>
sin-3</i> mutants more susceptible to stress, but the overall stress intolerance and physiological decline is sex dependent. The severity of the phenotype is more pronounced in hermaphrodites as compared to the males carrying the same mutation with respect to the controls. The results further suggest that genetic perturbation along with the gender play an important role in determining the lifespan, healthspan and overall fitness of an organism.
-
[
Worm Breeder's Gazette,
1976]
We have studied maternal effects in 23 zyg ts mutants to estimate the times of expression of genes whose products are required in embryogenesis. We have used the following three tests, called arbitrarily A, B, and C. A test: Heterozygous (m/+) L4's are shifted to 25 C and allowed to self-fertilize. If 100% of their eggs yield larvae (25% of which express the mutant phenotype as adults), then the mutant is scored as maternal (M). If 25% of the F1 eggs fail to hatch, then the mutant is scored as non-maternal (N). An M result indicates that expression of the + allele in the parent allows m/m zygotes to hatch and grow to adulthood. A result of N indicates the opposite: that the + allele must be expressed in the zygote for hatching to occur. Out of 23 zyg mutants tested, 3 were scored N and 20 were scored M in the A test. Therefore, for most of the genes defined by these mutants, expression in the parent is sufficient for zygote survival, even if the gene is not expressed in the zygote. B test: Homozygous (m/m) hermaphrodites reared at 25 C are mated with N2 (+/+) males. If eggs fail to hatch at 25 C, but mated hermaphrodites shifted to 16 C produce cross progeny to give proof of mating, then the mutant is scored M. If cross progeny appear in the 25 C mating, then the mutant is scored N. An M result indicates that expression of the + allele in the zygote is not sufficient to allow m/+ progeny of an m/m hermaphrodite to survive. Conversely an N result indicates either that zygotic expression of the + allele is sufficient for survival, or that a sperm function or factor needed for early embryogenesis can be supplied paternally (see C test below). Out of the 23 zyg mutants tested, 11 were scored M and 12 were scored N. The combined results of A and B tests and their simplest interpretation are as follows. Ten mutants are M,M; the genes defined by these mutants must be expressed in the hermaphrodite parent for the zygote to survive. Ten mutants are M,N; these genes can be expressed either in the parent or in the zygote. Two mutants are N,N; these genes must be expressed in the zygote. One mutant is N,M; this gene must be expressed both in the maternal parent and in the zygote. C test: Homozygous (m/m) hermaphrodites reared at 25 C are mated with heterozygous (m/+) males. If rescue by a +/+ male in the B test depends on the + allele, then only half the cross progeny zygotes of a C test mating (m/+ male x m/m hermaphrodite) should survive. However, if rescue depends on a function or cytoplasmic component from the male sperm, then all the cross progeny zygotes in a C test should survive. Of the 10 M,N mutants, 6 have been C tested; one exhibited paternal rescue independent of the + allele. The A and B tests also were carried out on 16 mutants that arrest before the L3 molt (acc mutants). In the A test on 2 of these mutants, all m/m progeny of m/+ parents grew to adulthood at 25 C. Therefore, parental contributions are sufficient to overcome a progeny mutational block as late as the L2 stage. All 16 acc mutants scored N in the B test.
-
[
Worm Breeder's Gazette,
1994]
cej-1 Encodes a Novel Protein with Poly-Threonine Motif M. L. A. Khanl, M. Tabish, T. Fukushigel1 S. Tsukita2, M. Itoh , Sh. Tsukita , and S. S. Siddiqui. (1): Lab. of Molecular Biology, Dept of Ecological Engg. Toyohashi Univ. Technology, Toyohashi 441, and (2). National Institute for Physiological Sciences, Okazaki 444, Japan.
-
[
Mech Ageing Dev,
2009]
Energy production via oxidative phosphorylation generates a mitochondrial membrane potential (DeltaPsi(m)) across the inner membrane. In this work, we show that a lower DeltaPsi(m) is associated with increased lifespan in Caenorhabditis elegans. The long-lived mutants
daf-2(
e1370),
age-1(
hx546),
clk-1(
qm30),
isp-1(
qm150) and
eat-2(
ad465) all have a lower DeltaPsi(m) than wild type animals. The lower DeltaPsi(m) of
daf-2(
e1370) is
daf-16 dependent, indicating that the insulin-like signaling pathway not only regulates lifespan but also mitochondrial energetics. RNA interference (RNAi) against 17 genes shown to extend lifespan also decrease DeltaPsi(m). Furthermore, lifespan can be significantly extended with the uncoupler carbonylcyanide-3-chlorophenylhydrazone (CCCP), which dissipates DeltaPsi(m). We conclude that longevity pathways converge on the mitochondria and lead to a decreased DeltaPsi(m). Our results are consistent with the 'uncoupling to survive' hypothesis, which states that dissipation of the DeltaPsi(m) will extend lifespan.
-
[
Arch Environ Contam Toxicol,
2005]
Fungi (Cunninghamella elegans ATCC 9245, Mucor ramannianus R-56, Aspergillus niger VKMF-1119, and Phanerochaete chrysosporium BKMF-1767) were tested to elucidate the biologic fate of the topical insect repellent N,N-diethyl-m-toluamide (DEET). The elution profile obtained from analysis by high-pressure liquid chromatography equipped with a reverse-phase C-18 column, showed that three peaks occurred after incubation of C. elegans, with which 1 mM DEET was combined as a final concentration. The peaks were not detected in the control experiments with either DEET alone or tested fungus alone. The metabolites produced by C. elegans exhibited a molecular mass of 207 with a fragment ion (m/z) at 135, a molecular mass of 179 with an m/z at 135, and a molecular mass of 163 with an m/z at 119, all of which correspond to N,N-diethyl-m-toluamide-N-oxide, N-ethyl-m-toluamide-N-oxide, and N-ethyl-m-toluamide, respectively. M. ramannianus R-56 also produced N, N-diethyl-m-toluamide-N-oxide and N-ethyl-m-toluamide but did not produce N-ethyl-m-toluamide-N-oxide. For the biologic toxicity test with DEET and its metabolites, the freshwater zooplankton Daphnia magna was used. The biologic sensitivity in decreasing order was DEET > N-ethyl-m-toluamide > N,N-diethyl-m-toluamide-N-oxide. Although DEET and its fungal metabolites showed relatively low mortality compared with other insecticides, the toxicity was increased at longer exposure periods. These are the first reports of the metabolism of DEET by fungi and of the biologic toxicity of DEET and its fungal metabolites to the freshwater zooplankton D. magna.