Variants inCACNA1Athat encodes the pore-forming 1-subunit of human voltage-gated Cav2.1 (P/Q-type) Ca(2+)channels cause several autosomal-dominant neurologic disorders, including familial hemiplegic migraine type 1, episodic ataxia type 2, and spinocerebellar ataxia type 6. To identify modifiers of incoordination in movement disorders, we performed a large-scale functional RNAi screen, using theCaenorhabditis elegansstrain CB55, which carries a truncating mutation in theunc-2gene, the worm ortholog for the humanCACNA1A The screen was carried out by the feeding method in 96-well liquid culture format, using the ORFeome
v1.1 feeding library, and time-lapse imaging of worms in liquid culture was used to assess changes in thrashing behavior. We looked for genes that, when silenced, either ameliorated the slow and uncoordinated phenotype ofunc-2, or interacted to produce a more severe phenotype. Of the 350 putative hits from the primary screen, 37 genes consistently showed reproducible results. At least 75% of these are specifically expressed in theC. elegansneurons. Functional network analysis and gene ontology revealed overrepresentation of genes involved in development, growth, locomotion, signal transduction, and vesicle-mediated transport. We have expanded the functional network of genes involved in neurodegeneration leading to cerebellar ataxia related tounc-2/CACNA1A, further confirming the involvement of the transforming growth factor pathway and adding a novel signaling cascade, the Notch pathway.