-
[
Methods Mol Biol,
2006]
The genome of the nematode Caenorhabditis elegans was the first animal genome sequenced. Subsequent sequencing of the Caenorhabditis briggsae genome enabled a comparison of the genomes of two nematode species. In this chapter, we describe the methods that we used to compare the C. elegans genome to that of C. briggsae. We discuss how these methods could be developed to compare the C. elegans and C. briggsae genomes to those of Caenorhabditis remanei, C. n. sp. represented by strains PB2801 and CB5161, among others (1), and Caenorhabditis japonica, which are currently being sequenced.
-
[
Trends Parasitol,
2012]
The broad-spectrum anthelmintic cyclooctadepsipeptide PF1022A is a fungal metabolite from Rosellinia sp. PF1022, which is a Mycelia sterilia found on the leaves of Camellia japonica. A broad range of structurally related cyclooctadepsipeptides has been characterized and tested for anthelmintic activities. These metabolites have been used as starting points to generate semisynthetic derivatives with varying nematocidal capacity. Predominant among these compounds is emodepside, which exhibits a broad nematocidal potential against gastrointestinal and extraintestinal parasites. Here we review the chemical biology and mode of action of cyclooctadepsides with particular attention to PF1022A and emodepside. We illustrate how they target nematode neuromuscular function, opening up new avenues for antiparasitic treatments with potential capability for important selective toxicity.
-
Hosseinian S, Gidziela A, Mech AM, Sealy IM, Brennan CH, Torres-Perez JV, Leggieri A, Petrazzini MEM, Malanchini M, Sheardown E, Busch-Nentwich EM
[
Neurosci Biobehav Rev,
2022]
Psychiatric disorders represent a significant burden in our societies. Despite the convincing evidence pointing at gene and gene-environment interaction contributions, the role of genetics in the aetiology of psychiatric disease is still poorly understood. Forward genetic screens in animal models have helped elucidate causal links. Here we discuss the application of mutagenesis-based forward genetic approaches in common animal model species: two invertebrates, nematodes (Caenorhabditis elegans) and fruit flies (Drosophila sp.); and two vertebrates, zebrafish (Danio rerio) and mice (Mus musculus), in relation to psychiatric disease. We also discuss the use of large scale genomic studies in human populations. Despite the advances using data from human populations, animal models coupled with next-generation sequencing strategies are still needed. Although with its own limitations, zebrafish possess characteristics that make them especially well-suited to forward genetic studies exploring the aetiology of psychiatric disorders.
-
[
Parasitol Res,
2018]
Onchocerciasis is a filarial vector borne disease which affects several million people mostly in Africa. The therapeutic approach of its control was based on a succession of drugs which always showed limits. The last one: ivermectin is not the least. It was shown to be only microfilaricidal and induced resistance to the human parasite Onchocerca volvulus. The approach using medicinal plants used in traditional medicine is a possible alternative method to cure onchocerciasis. Onchocerca ochengi and Onchocerca gutturosa are the parasite models used to assess anthelmintic activity of potentially anthelmintic plants. Numerous studies assessed the in vitro and/or in vivo anthelmintic activity of medicinal plants. Online electronic databases were consulted to gather publications on in vitro and in vivo studies of anti-Onchocerca activity of plants from 1990 to 2017. Globally, 13 plant families were investigated for anti-Onchocerca activity in 13 studies. The most active species were Anacardium occidentale, Euphorbia hirta and Acacia nilotica each with an LC<sub>50</sub> value of 2.76, 6.25 and 1.2g/mL, respectively. Polycarpol, voacamine, voacangine, ellagic acid, gallic acid, gentisic acid, 3-O-acetyl aleuritolic acid and (-)-epigallocatechin 3-O-gallate were the isolated plant compounds with anti-Onchocerca activity. Most of the assessed extract/compounds showed a good safety after in vivo acute toxicity assays and/or in vitro cytotoxicity test. The exception was the ethanol extract of Trichilia emetica, which killed completely and drastically mice at a dose of 3000mg/kg. Several plant groups of compounds were shown active against Onchocerca sp. such as tannins, alkaloids, triterpenoids and essential oils. Nevertheless, none of the active compounds was subjected to clinical trial, to assessment of its diffusibility through nodular wall or its capability to induce genetic resistance of Onchocerca sp.
-
[
Parasitology,
2014]
Parasitic lifestyles evolved many times independently. Just within the phylum Nematoda animal parasitism must have arisen at least four times. Switching to a parasitic lifestyle is expected to lead to changes in various life history traits including reproductive strategies. Parasitic nematode worms of the genus Strongyloides represent an interesting example to study these processes because they are still capable of forming facultative free-living generations in between parasitic ones. The parasitic generation consists of females only, which reproduce parthenogenetically. The sex in the progeny of the parasitic worms is determined by environmental cues, which control a, presumably ancestral, XX/XO chromosomal sex determining system. In some species the X chromosome is fused with an autosome and one copy of the X-derived sequences is removed by sex-specific chromatin diminution in males. Here I propose a hypothesis for how today's Strongyloides sp. might have evolved from a sexual free-living ancestor through dauer larvae forming free-living and facultative parasitic intermediate stages.
-
[
Bioessays,
2001]
Comparisons between related species often allow the detailed genetic analysis of evolutionary processes. Here we advocate the use of the nematode Caenorhabditis elegans (and several other rhabditid species) as model systems for microevolutionary studies. Compared to Drosophila species, which have been a mainstay of such studies, C. elegans has a self-fertilising mode of reproduction, a shorter life cycle and a convenient cell-level analysis of phenotypic variation. Data concerning its population genetics and ecology are still scarce, however. We review molecular, behavioral and developmental intraspecific polymorphisms for populations of C. elegans, Oscheius sp. 1 and Pristionchus pacificus. Focusing on vulval development, which has been well characterized in several species, we discuss relationships between patterns of variations: (1) for a given genotype (developmental variants), (2) after mutagenesis (mutability), (3) in different populations of the same species (polymorphisms) and (4) between closely related species. These studies have revealed that evolutionary variations between sister species affect those characters that show phenotypic developmental variants, that are mutable and that are polymorphic within species.
-
[
Med Trop (Mars),
2005]
Initial clinical trials in 1980 showed that ivermectin was remarkably effective against Onchocerca volvulus. Some 25 years after more than 50 million people are treated annually with Mectizan mainly within the framework of the African Programme for Onchocerciasis Control (APOC). This success has been possible thanks to Merck Mectizan Donation Program and to distribution through a novel strategy based on the strong involvement of endemic communities. In the last few years Mectizan has been used in combination with albendazole to control lymphatic filariasis on a large-scale basis in African countries. More recently ivermectin (under the tradename Stromectol) received market approval in France for treatment of gastrointestinal strongyloidiasis and scabies. Clinical trials are under way to evaluate the activity of ivermectin on nematodes (Loa loa, Mansonella sp., intestinal nematodes, cutaneous and visceral larva migrans) and ectoparasites (Pediculus humanus capitis, Phtirius pubis, Tunga penetrans, myiases). Trials are also ongoing to explain the mechanisms underlying the severe adverse events sometimes observed in patients presenting high Loa loa microfilaraemia and to develop preventive measures. Fundamental research will provide a better understanding of the mode of action of ivermectin at the molecular and cellular level, evaluate the risk of resistance of human parasites, and to determine the extent to which ivermectin could be used in association with other agents for the treatment of nonparasitic diseases.
-
[
Environ Int,
2019]
Telomeres (TLs) play major roles in stabilizing the genome and are usually shortened with ageing. The maintenance of TLs is ensured by two mechanisms involving telomerase (TA) enzyme and alternative lengthening telomeres (ALT). TL shortening and/or TA inhibition have been related to health effects on organisms (leading to reduced reproductive lifespan and survival), suggesting that they could be key processes in toxicity mechanisms (at molecular and cellular levels) and relevant as an early warning of exposure and effect of chemicals on human health and animal population dynamics. Consequently, a critical analysis of knowledge about relationships between TL dynamic and environmental pollution is essential to highlight the relevance of TL measurement in environmental toxicology. The first objective of this review is to provide a survey on the basic knowledge about TL structure, roles, maintenance mechanisms and causes of shortening in both vertebrates (including humans) and invertebrates. Overall, TL length decreases with ageing but some unexpected exceptions are reported (e.g., in species with different lifespans, such as the nematode Caenorhabditis elegans or the crustacean Homarus americanus). Inconsistent results reported in various biological groups or even between species of the same genus (e.g., the microcrustacean Daphnia sp.) indicate that the relation usually proposed between TL shortening and a decrease in TA activity cannot be generalized and depends on the species, stage of development or lifespan. Although the scientific literature provides evidence of the effect of ageing on TL shortening, much less information on the relationships between shortening, maintenance of TLs, influence of other endogenous and environmental drivers, including exposure to chemical pollutants, is available, especially in invertebrates. The second objective of this review is to connect knowledge on TL dynamic and exposure to contaminants. Most of the studies published on humans rely on correlative epidemiological approaches and few in vitro experiments. They have shown TL attrition when exposed to contaminants, such as polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), pesticides and metallic elements (ME). In other vertebrates, the studies we found deals mainly with birds and, overall, report a disturbance of TL dynamic consecutively to exposure to chemicals, including metals and organic compounds. In invertebrates, no data are available and the potential of TL dynamic in environmental risk assessment remains to be explored. On the basis of the main gaps identified some research perspectives (e.g., impact of endogenous and environmental drivers, dose response effects, link between TL length, TA activity, longevity and ageing) are proposed to better understand the potential of TL and TA measurements in humans and animals in environmental toxicology.