[
WormBook,
2005]
C. elegans hermaphrodites are self-fertile, and their rate and temporal pattern of egg-laying are modulated by diverse environmental cues. Egg-laying behavior has served as an important phenotypic assay for the genetic dissection of neuronal signal transduction mechanisms. This chapter reviews our current understanding of the neuronal and neurochemical mechanisms underlying the control of egg-laying in C. elegans. The roles of specific neurons in the egg-laying motor circuit, which release multiple neurotramsmitters affecting distinct parameters of egg-laying muscle activity, and the possible mechanisms for sensory control of egg-laying behavior, are discussed.
[
WormBook,
2006]
The simple and well-defined structure of the C. elegans nervous system has made it an attractive model for studying the neural and genetic basis of behavior. However, the wider use physiological methods for monitoring neural activity in vivo or determining the effects of specific ion channels on neuronal function has been a relatively recent development. This chapter presents a compendium of protocols and technical reports on the current state of the art in C. elegans electrophysiology and neuroimaging. These include methods for calcium imaging in intact animals, in situ electrical recording from neurons and muscle cells, and in vitro recording from cultured neurons and oocytes.