-
[
Sci Robot,
2021]
Analysis of <i>Caenorhabditis elegans</i> natural movement and optogenetic control of its muscle cells enable controlled locomotion.
-
[
WormBook,
2013]
Microfluidics has emerged as a set of powerful tools that have greatly advanced some areas of biological research, including research using C. elegans. The use of microfluidics has enabled many experiments that are otherwise impossible with conventional methods. Today there are many examples that demonstrate the main advantages of using microfluidics for C. elegans research, achieving precise environmental conditions and facilitating worm handling. Examples range from behavioral analysis under precise chemical or odor stimulation, locomotion studies in well-defined structural surroundings, and even long-term culture on chip. Moreover, microfluidics has enabled coupling worm handling and imaging thus facilitating genetic screens, optogenetic studies, and laser ablation experiments. In this article, we review some of the applications of microfluidics for C. elegans research and provide guides for the design, fabrication, and use of microfluidic devices for C. elegans research studies.
-
[
Molecules,
2019]
The nematode <i>Caenorhabditis elegans</i> is a powerful model organism that has been widely used to study molecular biology, cell development, neurobiology, and aging. Despite their use for the past several decades, the conventional techniques for growth, imaging, and behavioral analysis of <i>C. elegans</i> can be cumbersome, and acquiring large data sets in a high-throughput manner can be challenging. Developments in microfluidic "lab-on-a-chip" technologies have improved studies of <i>C. elegans</i> by increasing experimental control and throughput. Microfluidic features such as on-chip control layers, immobilization channels, and chamber arrays have been incorporated to develop increasingly complex platforms that make experimental techniques more powerful. Genetic and chemical screens are performed on <i>C. elegans</i> to determine gene function and phenotypic outcomes of perturbations, to test the effect that chemicals have on health and behavior, and to find drug candidates. In this review, we will discuss microfluidic technologies that have been used to increase the throughput of genetic and chemical screens in <i>C. elegans</i>. We will discuss screens for neurobiology, aging, development, behavior, and many other biological processes. We will also discuss robotic technologies that assist in microfluidic screens, as well as alternate platforms that perform functions similar to microfluidics.
-
[
Int J Parasitol Drugs Drug Resist,
2016]
The second scientific meeting in the series: "Anthelmintics: From Discovery to Resistance" was held in San Diego in February, 2016. The focus topics of the meeting, related to anthelmintic discovery and resistance, were novel technologies, bioinformatics, commercial interests, anthelmintic modes of action and anthelmintic resistance. Basic scientific, human and veterinary interests were addressed in oral and poster presentations. The delegates were from universities and industries in the US, Europe, Australia and New Zealand. The papers were a great representation of the field, and included the use of C.elegans for lead discovery, mechanisms of anthelmintic resistance, nematode neuropeptides, proteases, B.thuringiensis crystal protein, nicotinic receptors, emodepside, benzimidazoles, P-glycoproteins, natural products, microfluidic techniques and bioinformatics approaches. The NIH also presented NIAID-specific parasite genomic priorities and initiatives. From these papers we introduce below selected papers with a focus on anthelmintic drug screening and development.
-
[
International Journal of Developmental Biology,
1998]
Pleiotropy , a situation in which a single gene influences multiple phenotypic tra its, can arise in a variety of ways. This paper discusses possible underlying mechanisms and proposes a classification of the various phenomena involved.
-
[
Curr Biol,
2003]
A novel protein in Caenorhabditis elegans, SAS-4, is a component of centrioles and is required for centriole duplication. Depletion of SAS-4 results in stunted centrioles and a smaller centrosome, suggesting a link to organelle size control.
-
[
Curr Biol,
1997]
An increasing body of evidence indicates that
p53, the product of a tumour suppressor gene, has a role in development - could this developmental role have provided the primary driving force in the evolution of a protein best known as a stress-response integrator?
-
[
Genome Biol,
2009]
Comparison of a regulatory network that specifies dopaminergic neurons in Caenorhabditis elegans to the development of vertebrate dopamine systems in the mouse reveals a possible partial conservation of such a network.
-
[
Nature,
1990]
What molecular signalling machines tell a precursor cell to develop into a specialized structure? In one case, described in three papers, including that by Aroian et al. on page 693 of this issue, these machines turn out to be a receptor tyrosine kinase and a ras protein.
-
[
Curr Biol,
2000]
A second case has been found of a nematode gene involved in developmental timing that encodes a short, non-coding RNA. Both RNAs are expressed at specific times and appear to repress target genes by interacting with their 3' untranslated regions. A coincidence? Or does this pathway attract small RNA regulators?