[
2000]
There is growing interest in the use of bioindicators to assess metal toxicity in soil. The current ASTM Standard Guide for Conducting Laboratory Soil Toxicity Test with the lumbricid earthworm Eisenia fetida (E 1676-97) uses a common earthworm. The nematode Caenorhabditis elegans is a natural soil inhabitant with many characteristics that make an ideal alternate test organism. It has been used to assess metal toxicity in aquatic media, agar plates and in soil. Work is currently underway on the design of a C. elegans procedure for metals in soil. The objective of this study was to determine differences in LC50S between the chloride salt and the nitrate salt forms of cadmium, copper, lead, nickel, and zinc, in three types of soil: Cecil, Tifton, and ASTM artificial soil. Results indicated that the toxicological effect of the metallic salt varies and is dependent on the particular metal. For Cd and Pb the nitrate form is more toxic while Cu and Ni are more toxic in the chloride form. The composition of the soil also effected toxicity, with the metal being the least toxic in ASTM soil and more toxic in the Tifton soil. This strongly correlated with organic matter and clay content of the soil. It is important to determine the effects of carrier salt form and soil composition on metal toxicity, not only in order to standardize the protocol for C. elegans soil toxicity testing, but also in establishing acceptable exposure concentrations in the soil.
[
WormBook,
2005]
Nematodes are the most abundant type of animal on earth, and live in hot springs, polar ice, soil, fresh and salt water, and as parasites of plants, vertebrates, insects, and other nematodes. This extraordinary ability to adapt, which hints at an underlying genetic plasticity, has long fascinated biologists. The fully sequenced genomes of Caenorhabditis elegans and Caenorhabditis briggsae, and ongoing sequencing projects for eight other nematodes, provide an exciting opportunity to investigate the genomic changes that have enabled nematodes to invade many different habitats. Analyses of the C. elegans and C. briggsae genomes suggest that these include major changes in gene content; as well as in chromosome number, structure and size. Here I discuss how the data set of ten genomes will be ideal for tackling questions about nematode evolution, as well as questions relevant to all eukaryotes.