-
Reich J, Fernandes AR, St Johnston D, Martin J, Rodriguez J, Gubieda AG, Hirani N, Ahringer J, Peglion F, Goehring NW, Hubatsch L, Roffey J
[
Dev Cell,
2017]
The conserved polarity effector proteins PAR-3, PAR-6, CDC-42, and atypical protein kinase C (aPKC) form a core unit of the PAR protein network, which plays a central role in polarizing a broad range of animal cell types. To functionally polarize cells, these proteins must activate aPKC within a spatially defined membrane domain on one side of the cell inresponse to symmetry-breaking cues. Using the Caenorhabditis elegans zygote as a model, we find that the localization and activation of aPKC involve distinct, specialized aPKC-containing assemblies: a PAR-3-dependent assembly that responds to polarity cues and promotes efficient segregation of aPKC toward the anterior but holds aPKC in an inactive state, and a CDC-42-dependent assembly in which aPKC isactive but poorly segregated. Cycling of aPKC between these distinct functional assemblies, which appears to depend on aPKC activity, effectively linkscue-sensing and effector roles within the PAR network to ensure robust establishment of polarity.
-
[
J Am Mosq Control Assoc,
1999]
The susceptibility to Brugia malayi infection was tested in F2 female progeny derived from male and female Aedes togoi treated with ethyl methanesulfonate (EMS). Three-day-old males and females were treated with 0.025, 0.050, and 0.075, 0.10, 0.15, or 0.20% EMS by allowing them to feed for 5 days on sugar cubes containing EMS and then mated at random. Percentage of susceptibility and mean number of infective larvae (L3) in F2 females were analyzed over a 2-wk period. Reductions in susceptibility were significant in the F2 populations arising from the 3 highest EMS concentrations. F2 infections were reduced by 80%, indicating that EMS-induced mutations affect loci associated with filarial nematode susceptibility.
-
[
J Neurosci Res,
2014]
At chemical synapses, neurons communicate information to other cells by secreting neurotransmitters or neuropeptides into the synaptic cleft, which then bind to receptors on the target cell. Preliminary work performed in our laboratory has shown that mutant nematodes lacking a protein called VSM-1 have increased synaptic density compared with the wild type. Consequently, we hypothesized that genes expressed in
vsm-1 mutants mediate enhanced synaptogenesis. To identify these genes of interest, we utilized microarray technology and quantitative PCR. To this end, first we isolated the total RNA from young-adult wild-type and
vsm-1 mutant Caenorhabditis elegans. Next, we synthesized cDNA from reverse transcription of the isolated RNA. Hybridization of the cDNA to a microarray was performed to facilitate gene expression profiling. Finally, fluorescently labeled microarrays were analyzed, and the identities of induced and repressed genes were uncovered in the open-source software Magic Tool. Analyses of microarray experiments performed using three independent biological samples per strain and three technical replicas and dye swaps showed induction of genes coding for major sperm proteins and repression of SPP-2 in
vsm-1 mutants. Microarray results were also validated and quantified by using quantitative PCR.
-
[
J Biol Chem,
2022]
Anthelmintics are used to treat human and veterinary parasitic diseases, as well as to reduce crop and livestock production loss associated with parasitosis. The free-living nematode Caenorhabditis elegans, a model system for anthelmintic drug discovery, has a serotonin (5-HT)-gated chloride channel, MOD-1, which belongs to the Cys-loop receptor family and modulates locomotory and behavioral functions. Since MOD-1 is unique to nematodes, it is emerging as an attractive anthelmintic drug target, but details of MOD-1 function are unclear. Here, we revealed novel aspects of MOD-1 function from the molecular level to the organism level and identified compounds targeting this receptor, which may provide new directions for anthelmintic drug discovery. We used whole-cell current recordings from heterologously expressed MOD-1 to show that tryptamine, a weak partial agonist of vertebrate 5-HT<sub>3</sub> receptors, efficaciously activates MOD-1. A screen for modulators revealed that GABAergic ligands piperazine and muscimol reduce 5-HT-elicited currents, thus identifying novel MOD-1 allosteric inhibitors. Next, we performed locomotor activity assays, and we found 5-HT and tryptamine rapidly decrease worm motility, which is reversible only at low 5-HT concentrations. Mutants lacking MOD-1 are partially resistant to both drugs, demonstrating its key role in locomotion. Acting as an antagonist of MOD-1, we showed piperazine reduces the locomotor effects of exogenous 5-HT. Therefore, tryptamine- and piperazine-derived compounds, acting at MOD-1 through different molecular mechanisms, emerge as promising anthelmintic agents. This study enhances our knowledge of the function and drug selectivity of Cys-loop receptors and postulates MOD-1 as a potential target for anthelmintic therapy.
-
[
Dev Cell,
2017]
In this issue of Developmental Cell, Dickinson etal. (2017) and Rodriguez etal. (2017), along with Wang etal. (2017) in Nature Cell Biology, show how PAR protein oligomerization can dynamically couple protein diffusion and transport by cortical flow to control kinase activity gradients and polarity in the C.elegans zygote.
-
[
Am J Trop Med Hyg,
2008]
Entomologic and serologic surveys were performed in four sentinel communities in the Oaxaca focus in southern Mexico to assess the level of transmission and exposure incidence to Onchocerca volvulus. All communities have been receiving ivermectin mass treatment twice per year since 1997. In one community, parasite DNA was detected by polymerase chain reaction-enzyme-linked immunosorbent assay in 2004 in one pool of 50 vector heads of 170 such pools (8,500 flies) examined, which indicated an estimated transmission potential of 6.7 third-stage larvae/person/year. No evidence for transmission was found in the three other communities in 13,650 flies examined. All persons in a cohort consisting of 117 children in the four communities remained serologically negative for antibodies recognizing a cocktail of recombinant antigens over a four-year period from 2001 to 2004, which indicated an exposure incidence of 0%. Taken together, these data suggest that transmission has been suppressed in the four communities.
-
[
Am J Trop Med Hyg,
2010]
All endemic communities of the Oaxaca focus of onchocerciasis in southern Mexico have been treated annually or semi-annually with ivermectin since 1994. In-depth epidemiologic assessments were performed in communities during 2007 and 2008. None of the 52,632 Simulium ochraceum s.l. collected in four sentinel communities was found to contain parasite DNA when tested by polymerase chain reaction-enzyme-linked immunosorbent assay (PCR-ELISA), resulting in an upper bound of the infection rate in the vectors of 0.07/2,000. The prevalence of microfilariae (mf) in the cornea and/or anterior chamber of the eye was also zero (0 of 1,039 residents examined; 95%-UL = 0.35%). Similarly, all 1,164 individuals examined by skin biopsy were mf negative (95%-UL = 0.31%), and sera collected from 3,569 children from 25 communities did not harbor Ov16 IgG4-antibodies (95%-UL = 0.09%). These meet the criteria for absence of morbidity and parasite transmission in the Oaxaca focus. As a result mass treatments with ivermectin were halted in 2009.
-
[
Am J Trop Med Hyg,
2010]
The northern Chiapas onchocerciasis focus has undergone 11 years of ivermectin mass treatment. No evidence of microfilariae in the cornea and/or anterior chamber of the eye or in skin snips was seen in residents examined in 2006 in two sentinel communities (upper limit of the 95% confidence interval [UL 95% CI] = 0.5% and 0.3%, respectively). In children 10 and under, 0 of 305 were found to harbor antibodies to Ov16, a marker of parasite exposure; 0 of 4,400 Simulium ochraceum s.l. collected in 2005 contained parasite DNA, giving an UL 95% CI for the infective rate of 0.9/2,000, and an UL 95% CI of the seasonal transmission potential of 1.2 L3/person. These data, assumed to be representative of the focus as a whole, suggest that there is no ongoing transmission of Onchocerca volvulus in the northern Chiapas focus. Community-wide treatments with ivermectin were halted in 2008, and a post-treatment surveillance phase was initiated.
-
[
Biochemistry,
1987]
The major intestinal esterase from the nematode Caenorhabditis elegans has been purified to essential homogeneity. Starting from whole worms, the overall purification is 9000-fold with a 10% recovery of activity. The esterase is a single polypeptide chain of Mr 60,000 and is stoichiometrically inhibited by organophosphates. Substrate preferences and inhibition patterns classify the enzyme as a carboxylesterase (EC 3.1.1.1), but the physiological function is unknown. The sequence of 13 amino acid residues at the esterase N- terminus has been determined. This partial sequence shows a surprisingly high degree of similarity to the N-terminal sequence of two carboxylesterases recently isolated from Drosophila mojavensis [Pen, J., van Beeumen, J., & Beintema, J. J. (1986) Biochem. J. 238, 691-699].
-
[
FASEB J,
2007]
Nna1 has some sequence similarity to metallocarboxypeptidases, but the biochemical characterization of Nna1 has not previously been reported. In this work we performed a detailed genomic scan and found >100 Nna1 homologues in bacteria, Protista, and Animalia, including several paralogs in most eukaryotic species. Phylogenetic analysis of the Nna1-like sequences demonstrates a major divergence between Nna1-like peptidases and the previously known metallocarboxypeptidases subfamilies: M14A, M14B, and M14C. Conformational modeling of representative Nna1-like proteins from a variety of species indicates an unusually open active site, a property that might facilitate its action on a wide variety of peptide and protein substrates. To test this, we expressed a recombinant form of one of the Nna1-like peptidases from Caenorhabditis elegans and demonstrated that this protein is a fully functional metallocarboxypeptidase that cleaves a range of C-terminal amino acids from synthetic peptides. The enzymatic activity is activated by ATP/ADP and salt-inactivated, and is preferentially inhibited by Z-Glu-Tyr dipeptide, which is without precedent in metallocarboxypeptidases and resembles tubulin carboxypeptidase functioning; this hypothesis is strongly reinforced by the results depicted in Kalinina et al. published as accompanying paper in this journal (1). Our findings demonstrate that the M14 family of metallocarboxypeptidases is more complex and diverse than expected, and that Nna1-like peptidases are functional variants of such enzymes, representing a novel subfamily (we propose the name M14D) that contributes substantially to such diversity.--Rodriguez de la Vega, M., Sevilla, R. G., Hermoso, A., Lorenzo, J., Tanco, S., Diez, A., Fricker, L. D., Bautista, J. M., Aviles, F. X. Nna1-like proteins are active metallocarboxypeptidases of a new and diverse M14 subfamily.