[
Development,
2024]
Asymmetric cell divisions can produce daughter cells of different sizes, but it is unclear whether unequal cell cleavage is important for cell fate decisions. A new paper in Development explores the role of unequal cleavages in Caenorhabditis elegans embryos. To learn more about the story behind the paper, we caught up with first author Thomas Mullan and corresponding author Richard Poole, Associate Professor of Developmental Biology at University College London, UK.
[
Brief Bioinform,
2000]
Acedb is one of the more venerable pieces of Genomics software. Acedb was originally created in 1992 by Richard Durbin and Jean Thierry-Mieg to manage the data from the Caenorhabditis elegans mapping project and subsequently the C. elegans sequencing project. From beginnings as a C. elegans-specific tool, it has been continuously developed into a flexible suite of data management, display and scripting tools providing facilities for managing and annotation mapping information and DNA and peptide sequences.This paper gives a basic overview of the Acedb suite, and step-by-step guidance on how to download and install Acedb. It is intended to take an Acedb novice to stage where they can begin to experiment and explore the facilities that are available.
[
Bioessays,
2008]
Homology is the similarity between organisms due to common ancestry. Introduced by Richard Owen in 1843 in a paper entitled "Lectures on comparative anatomy and physiology of the invertebrate animals", the concept of homology predates Darwin's "Origin of Species" and has been very influential throughout the history of evolutionary biology. Although homology is the central concept of all comparative biology and provides a logical basis for it, the definition of the term and the criteria of its application remain controversial. Here, I will discuss homology in the context of the hierarchy of biological organization. I will provide insights gained from an exemplary case study in evolutionary developmental biology that indicates the uncoupling of homology at different levels of biological organization. I argue that continuity and hierarchy are separate but equally important issues of homology.
[
Biotechniques,
1999]
We describe the use of modified versions of the Aequora victoria green fluorescent protein (GFP) to simultaneously follow the expression and distribution of two different proteins in the nematode, Caenorhabditis elegans. A cyan-colored GFP derivative, designated CFP, contains amino acid (aa) substitutions Y66W, N146I, M153T and V163A relative to the original GFP sequence and is similar to the previously reported "W7" form. A yellow-shifted GFP derivative, designated YFP, contains aa substitutions S65G, V68A, S72A and T203Y and is similar to the previously described "I0C" variant. Coding regions for CFP and YFP were constructed in the context of a high-activity C. elegans expression system. Previously characterized promoters and localization signals have been used to express CFP and YFP in C. elegans. Filter sets designed to distinguish YFP and CFP fluorescence spectra allowed visualization of the two distinct forms of GFP in neurons and in muscle cells. A series of expression vectors carrying CFP and YFP have been constructed and are being made available to the scientific community.
[
Zootaxa,
2022]
Rhagovelia medinae sp. nov., of the hambletoni group (angustipes complex), and R. utria sp. nov., of the hirtipes group (robusta complex), are described, illustrated, and compared with similar congeners. Based on the examination of type specimens, six new synonymies are proposed: R. elegans Uhler, 1894 = R. pediformis Padilla-Gil, 2010, syn. nov.; R. cauca Polhemus, 1997 = R. azulita Padilla-Gil, 2009, syn. nov., R. huila Padilla-Gil, 2009, syn. nov., R. oporapa Padilla-Gil, 2009, syn. nov, R. quilichaensis Padilla-Gil, 2011, syn. nov.; and R. gaigei, Drake Hussey, 1947 = R. victoria Padilla-Gil, 2012 syn. nov. The first record from Colombia is presented for R. trailii (White, 1879), and the distributions of the following species are extended in the country: R. cali Polhemus, 1997, R. castanea Gould, 1931, R. cauca Polhemus, 1997, R. gaigei Drake Hussey, 1957, R. elegans Uhler, 1894, R. femoralis Champion, 1898, R. malkini Polhemus, 1997, R. perija Polhemus, 1997, R. sinuata Gould, 1931, R. venezuelana Polhemus, 1997, R. williamsi Gould, 1931, and R. zeteki Drake, 1953.
Cole FS, Silverman GA, Thomas BJ, Chou WYY, Wambach JA, Kim H, Buland JR, Jia H, Homayouni A, Moreno M, Luke CJ, Pak SC, Huang H, Wight IE, Dawson Z
[
PLoS One,
2019]
Due to its ease of genetic manipulation and transparency, Caenorhabditis elegans (C. elegans) has become a preferred model system to study gene function by microscopy. The use of Aequorea victoria green fluorescent protein (GFP) fused to proteins or targeting sequences of interest, further expanded upon the utility of C. elegans by labeling subcellular structures, which enables following their disposition during development or in the presence of genetic mutations. Fluorescent proteins with excitation and emission spectra different from that of GFP accelerated the use of multifluorophore imaging in real time. We have expanded the repertoire of fluorescent proteins for use in C. elegans by developing a codon-optimized version of Orange2 (CemOrange2). Proteins or targeting motifs fused to CemOrange2 were distinguishable from the more common fluorophores used in the nematode; such as GFP, YFP, and mKate2. We generated a panel of CemOrange2 fusion constructs, and confirmed they were targeted to their correct subcellular addresses by colocalization with independent markers. To demonstrate the potential usefulness of this new panel of fluorescent protein markers, we showed that CemOrange2 fusion proteins could be used to: 1) monitor biological pathways, 2) multiplex with other fluorescent proteins to determine colocalization and 3) gain phenotypic knowledge of a human ABCA3 orthologue, ABT-4, trafficking variant in the C. elegans model organism.