-
Sorrentino V, Deplancke B, Ouhmad T, Cornaglia M, Gijs MA, Auwerx J, Williams EG, Krishnamani G, Frochaux MV, Nicolet-Dit-Felix AA, Lin T, Mouchiroud L
[
Curr Protoc Neurosci,
2016]
Phenotyping strategies in simple model organisms such as D. melanogaster and C. elegans are often broadly limited to growth, aging, and fitness. Recently, a number of physical setups and video tracking software suites have been developed to allow for accurate, quantitative, and high-throughput analysis of movement in flies and worms. However, many of these systems require precise experimental setups and/or fixed recording formats. We report here an update to the Parallel Worm Tracker software, which we termed the Movement Tracker. The Movement Tracker allows variable experimental setups to provide cross-platform automated processing of a variety of movement characteristics in both worms and flies and permits the use of simple physical setups that can be readily implemented in any laboratory. This software allows high-throughput processing capabilities and high levels of flexibility in video analysis, providing quantitative movement data on C. elegans and D. melanogaster in a variety of different conditions. 2016 by John Wiley and Sons, Inc.
-
[
WormBook,
2005]
Cell-division control affects many aspects of development. Caenorhabditis elegans cell-cycle genes have been identified over the past decade, including at least two distinct Cyclin-Dependent Kinases (CDKs), their cyclin partners, positive and negative regulators, and downstream targets. The balance between CDK activation and inactivation determines whether cells proceed through G 1 into S phase, and from G 2 to M, through regulatory mechanisms that are conserved in more complex eukaryotes. The challenge is to expand our understanding of the basic cell cycle into a comprehensive regulatory network that incorporates environmental factors and coordinates cell division with growth, differentiation and tissue formation during development. Results from several studies indicate a critical role for CKI-1 , a CDK inhibitor of the Cip/Kip family, in the temporal control of cell division, potentially acting downstream of heterochronic genes and dauer regulatory pathways.
-
[
Methods Cell Biol,
1995]
In studying embryos of many species, methods of fragmenting and culturing embryonic tissues or cells have been useful for addressing questions of blastomere autonomy in early and later embryogenesis, for exposure to drugs or other agents that perturb specific processes, and for direct labeling of DNA or RNA. For Caenorhabditis elegans workers, the small size of the embryo and the impermeability of the chitinous eggshell and inner vitelline membrane have made such experiments difficult. A method of permeabilization and blastomere isolation, a culture system that will support further cellular development and differentiation, and assay methods for assaying the degree of development and its relative normality after experimental manipulation are minimal requirements for a satisfactory C. elegans embryonic culture system. Methods of isolating early blastomeres have included crushing of the eggshell and extrusion, laser ablation of neighboring blastomeres within an itact eggshell, laser puncturing of the eggshell producing extrusion, and digestion of the eggshell followed by shearing or manual stripping of the vitelline membrane. This last method is described in detail below. Permeabilization of complete embryos can be achieved by the same methods; in addition, one-cell embryos within the shell can be permeabilized to certain drugs such as cytochalasin D by gentle pressure on an overlying
-
[
1987]
Vitellogenins of many insects, vertebrates, nematodes and sea urchins are very similar in size and amino acid composition. We have determined the nucleotide sequences of the genes that encode vitellogenins in nematodes (C. elegans) and sea urchins (S. purpuratus), and compared the deduced amino acid sequences to the published sequences of two vertebrate vitellogenins (X. laevis and G. gallus). This comparison demonstrated unequivocally that the nematode and vertebrate proteins are encoded by distant members of a single gene family. The less extensive sequence data available for the sea urchin gene indicates that this, too, may be a member of this family of genes, as may the vitellogenin genes of locust. On the other hand, we were unable to detect any similarity between these genes and the D. melanogaster yolk protein genes. Thus it appears that while nematodes, vertebrates, sea urchins and at least some insects utilize the same family of genes to encode vitellogenins, Drosophila uses a different gene family. All of the vitellogenin genes are regulated in a tissue-specific manner. They are expressed in the intestine in nematodes, in the liver in vertebrates, in the fat body in insects, and in the intestine and gonad in sea urchins. Their production is limited to adult females in all species except sea urchins, in which they are expressed by adults of both sexes. In nematodes we have identified two heptameric sequence elements repeated multiple times in all eleven of the vitellogenin genes sequenced. One of these elements is also present in the vertebrate promoters and has recently been shown to be required for transcriptional activation. All of the 5' ends of the vitellogenin mRNAs of nematodes, vertebrates and locust can be folded into potentially-stable secondary structures. We present evidence that these structures have been strongly selected for and presumably perform some function in regulation of vitellogenin production.
-
[
WormBook,
2006]
There are two sexes in C. elegans, hermaphrodite and male. While there are many sex-specific differences between males and hermaphrodites that affect most tissues, the basic body plan and many of its structures are identical. However, most structures required for mating or reproduction are sexually dimorphic and are generated by sex-specific cell lineages. Thus to understand cell fate specification in hermaphrodites, one must consider how the body plan, which is specified during embryogenesis, influences the fates individual cells. One possible mechanism may involve the asymmetric distribution of POP-1 /Tcf, the sole C. elegans Tcf homolog, to anterior-posterior sister cells. Another mechanism that functions to specify cell fates along the anterior-posterior body axis in both hermaphrodites and males are the Hox genes. Since most of the cell fate specifications that occur in hermaphrodites also occur in males, the focus of this chapter will be on those that only occur in hermaphrodites. This will include the cell fate decisions that affect the HSN neurons, ventral hypodermal P cells, lateral hypodermal cells V5 , V6 , and T ; as well as the mesodermal M, Z1 , and Z4 cells and the intestinal cells. Both cell lineage-based and cell-signaling mechanisms of cell fate specification will be discussed. Only two direct targets of the sex determination pathway that influence cell fate specification to produce hermaphrodite-specific cell fates have been identified. Thus a major challenge will be to learn additional mechanisms by which the sex determination pathway interacts with signaling pathways and other cell fate specification genes to generate hermaphrodite-specific cell fates.