-
[
Rivista Di Biologia Biology Forum,
1992]
Certain mutants of the nematode Caenorhabditis elegans exhibit an abnormal reiteration of specific cell divisions...
-
[
Bioessays,
2018]
Glycogen is synthesized and stored to maintain postprandial blood glucose homeostasis and to ensure an uninterrupted energy supply between meals. Although the regulation of glycogen turnover has been well studied, the effects of glycogen on aging and disease development have been largely unexplored. In Caenorhabditis elegans fed a high sugar diet, glycogen potentiates resistance to oxidants, but paradoxically, shortens lifespan. Depletion of glycogen by oxidants or inhibition of glycogen synthesis extends the lifespan of worms by an AMPK-dependent mechanism. Thus, glycogen is not merely an inert storage molecule, but also an active regulator of energy balance and aging. Its depletion by oxidants may be beneficial in the treatment of hyperglycemia and glycogen-related diseases.
-
[
Wiley Interdiscip Rev Dev Biol,
2012]
This review aims to provide an overview of the technologies which make the nematode Caenorhabditis elegans an attractive genetic model system. We describe transgenesis techniques and forward and reverse genetic approaches to isolate mutants and clone genes. In addition, we discuss the new possibilities offered by genome engineering strategies and next-generation genome analysis tools.
-
[
Curr Opin Neurobiol,
2004]
The anatomical and developmental constancy of Caenorhabditis elegans belies the complexity of its numerically small nervous system. Indeed, there is an increased appreciation of C. elegans as an organism to study systems level questions. Many recent studies focus on the circuits that control locomotion, egg-laying, and male mating behaviors and their modulation by multiple sensory
-
[
Nature,
2001]
Mechanotransduction - a cell's conversion of a mechanical stimulus into an electrical signal - reveals vital features of an organism's environment. From hair cells and skin mechanoreceptors in vertebrates, to bristle receptors in flies and touch receptors in worms, mechanically sensitive cells are essential in the life of an organism. The scarcity of these cells and the uniqueness of their transduction mechanisms have conspired to slow molecular characterization of the ensembles that carry out mechanotransduction. But recent progress in both invertebrates and vertebrates is beginning to reveal the identities of proteins essential for transduction.
-
[
WormBook,
2005]
Nervous systems are characterized by an astounding degree of cellular diversity. The nematode Caenorhabditis elegans has served as a valuable model system to define the genetic programs that serve to generate cellular diversity in the nervous system. This review discusses neuronal diversity in C. elegans and provides an overview of the molecular mechanisms that define and specify neuronal cell types in C. elegans.
-
[
Genome Biol,
2008]
ABSTRACT: An integrated gene network for Caenorhabditis elegans using data from multiple genome-wide screens encompasses most protein-coding genes and can accurately predict their phenotypes.
-
[
Nature,
1991]
Populations of the soil nematode Caenorhabditis elegans normally consist almost exclusively of self-fertilizing hermaphrodites. The animal first matures about 300 sperm and then a much larger number of oocytes (eggs). Nearly every sperm is used to fertilize an egg and so the maximum fecundity is around 300. Why doesn't the nematode mature more sperm and thus increase its fecundity? In a paper in the Proceedings of the Royal Society (B246, 19-24; 1991), J. Hodgkin and T.M. Barnes provide both an elegant answer and a rare insight into the mechanistic basis of an important life-history trade-off.
-
[
Mech Ageing Dev,
2004]
Melendez et al. [Science 301 (2003) 1387] have recently shown that the increased longevity of Caenorhabditis elegans mutants with defective Daf-2 protein, i.e. an insulin receptor analog, involves increased autophagy. Autophagy increases the free amino acid pool and is in certain cells essential for survival at times of limited amino acid availability. In addition, autophagy plays an important role in the turnover of proteins and organelles including mitochondria. The autophagic activity is sensitive to changes in physiological conditions, i.e. it is strongly inhibited by an increase in amino acid concentrations or in insulin receptor signaling. In line with this fact, clinical studies indicate that autophagy mainly occurs at times of low plasma amino acid and insulin concentrations in the post-absorptive (fasted) state, and that the post-absorptive amino acid-sensitive protein catabolism may be taken as a bona fide indicator of autophagic activity. The increased longevity of insulin receptor mutants or of organisms subjected to calorie restriction may, therefore, be attributed to an increase in autophagic activity. Importantly, the autophagic activity decreases with age. Recent studies suggest that this decrease may result from an age-related increase in post-absorptive amino acid levels and/or from an increase in baseline insulin receptor signaling. If so, it is potentially reversible.
-
[
Curr Opin Neurobiol,
2016]
Brain, body and environment are in continuous dynamical interaction, and it is becoming increasingly clear that an animal's behavior must be understood as a product not only of its nervous system, but also of the ongoing feedback of this neural activity through the biomechanics of its body and the ecology of its environment. Modeling has an essential integrative role to play in such an understanding. But successful whole-animal modeling requires an animal for which detailed behavioral, biomechanical and neural information is available and a modeling methodology which can gracefully cope with the constantly changing balance of known and unknown biological constraints. Here we review recent progress on both optogenetic techniques for imaging and manipulating neural activity and neuromechanical modeling in the nematode worm Caenorhabditis elegans. This work demonstrates both the feasibility and challenges of whole-animal modeling.