[
Proc Natl Acad Sci U S A,
1999]
Caenorhabditis elegans should soon be the first multicellular organism whose complete genomic sequence has been determined. This achievement provides a unique opportunity for a comprehensive assessment of the signal transduction molecules required for the existence of a multicellular animal. Although the worm C. elegans may not much resemble humans, the molecules that regulate signal transduction in these two organisms prove to be quite similar. We focus here on the content and diversity of protein kinases present in worms, together with an assessment of other classes of proteins that regulate protein phosphorylation. By systematic analysis of the 19,099 predicted C. elegans proteins, and thorough analysis of the finished and unfinished genomic sequences, we have identified 411 full length protein kinases and 21 partial kinase fragments. We also describe 82 additional proteins that are predicted to be structurally similar to conventional protein kinases even though they share minimal primary sequence identity. Finally, the richness of phosphorylation-dependent signaling pathways in worms is further supported with the identification of 185 protein phosphatases and 128 phosphoprotein-binding domains (SH2, PTB, STYX, SBF, 14-3-3, FHA, and WW) in the worm genome.
[
Trends in Biochemical Sciences,
2002]
Protein phosphorylation controls many cellular processes, especially those involved in intercellular communication and coordination of complex functions. To explore the evolution of protein phosphorylation, we compared the protein kinase complements ('kinomes') of budding yeast, worm and fly, with known human kinases. We classify kinases into putative orthologous groups with conserved functions and discuss kinase families and pathways that are unique, expanded or lost in each lineage. Fly and human share several kinase families involved in immunity, neurobiology, cell cycle and morphogenesis that are absent from worm, suggesting that these functions might have evolved after the divergence of nematodes from the main metazoan lineage.