-
[
Genetics,
2018]
Highly regulated cell migration events are crucial during animal tissue formation and the trafficking of cells to sites of infection and injury. Misregulation of cell movement underlies numerous human diseases, including cancer. Although originally studied primarily in two-dimensional in vitro assays, most cell migrations in vivo occur in complex three-dimensional tissue environments that are difficult to recapitulate in cell culture or ex vivo Further, it is now known that cells can mobilize a diverse repertoire of migration modes and subcellular structures to move through and around tissues. This review provides an overview of three distinct cellular movement events in Caenorhabditis elegans-cell invasion through basement membrane, leader cell migration during organ formation, and individual cell migration around tissues-which together illustrate powerful experimental models of diverse modes of movement in vivo We discuss new insights into migration that are emerging from these in vivo studies and important future directions toward understanding the remarkable and assorted ways that cells move in animals.
-
[
Int J Mol Sci,
2020]
The cell shape changes that ensure asymmetric cell divisions are crucial for correct development, as asymmetric divisions allow for the formation of different cell types and therefore different tissues. The first division of the <i>Caenorhabditis elegans</i> embryo has emerged as a powerful model for understanding asymmetric cell division. The dynamics of microtubules, polarity proteins, and the actin cytoskeleton are all key for this process. In this review, we highlight studies from the last five years revealing new insights about the role of actin dynamics in the first asymmetric cell division of the early <i>C. elegans</i> embryo. Recent results concerning the roles of actin and actin binding proteins in symmetry breaking, cortical flows, cortical integrity, and cleavage furrow formation are described.
-
[
Biochemistry,
1987]
The major intestinal esterase from the nematode Caenorhabditis elegans has been purified to essential homogeneity. Starting from whole worms, the overall purification is 9000-fold with a 10% recovery of activity. The esterase is a single polypeptide chain of Mr 60,000 and is stoichiometrically inhibited by organophosphates. Substrate preferences and inhibition patterns classify the enzyme as a carboxylesterase (EC 3.1.1.1), but the physiological function is unknown. The sequence of 13 amino acid residues at the esterase N- terminus has been determined. This partial sequence shows a surprisingly high degree of similarity to the N-terminal sequence of two carboxylesterases recently isolated from Drosophila mojavensis [Pen, J., van Beeumen, J., & Beintema, J. J. (1986) Biochem. J. 238, 691-699].
-
[
Dev Biol,
2021]
Asymmetric cell division is an essential feature of normal development and certain pathologies. The process and its regulation have been studied extensively in the Caenorhabditis elegans embryo, particularly how symmetry of the actomyosin cortical cytoskeleton is broken by a sperm-derived signal at fertilization, upstream of polarity establishment. Diploscapter pachys is the closest parthenogenetic relative to C.elegans, and D.pachys one-cell embryos also divide asymmetrically. However how polarity is triggered in the absence of sperm remains unknown. In post-meiotic embryos, we find that the nucleus inhabits principally one embryo hemisphere, the future posterior pole. When forced to one pole by centrifugation, the nucleus returns to its preferred pole, although poles appear identical as concerns cortical ruffling and actin cytoskeleton. The location of the meiotic spindle also correlates with the future posterior pole and slight actin enrichment is observed at that pole in some early embryos along with microtubule structures emanating from the meiotic spindle. Polarized location of the nucleus is not observed in pre-meiotic D.pachys oocytes. All together our results are consistent with the idea that polarity of the D.pachys embryo is attained during meiosis, seemingly based on the location of the meiotic spindle, by a mechanism that may be present but suppressed in C.elegans.
-
[
Curr Biol,
1999]
In this Brief Communication, which appeared in the 14 September 1998 issue of Current Biology, the UV dose was reported erroneously. The dose reported was 20 J/m2 but the actual dose used was 0.4 J/cm2. Also, the gene formally referred to as
tkr-1 has since been renamed
old-1 (overexpression longevity determination).
-
[
J Bacteriol,
2014]
Volume 195, no. 16, p. 35143523, 2013. A number of problems related to images published in this paper have been brought to our attention. Figure 1D contains duplicated images in lanes S and LE, and Fig. 4D and 6B contain images previously published in articles in this journal and in Microbiology and Microbial Pathogenesis, i.e., the following: C. G. Ramos, S. A. Sousa, A. M. Grilo, J. R. Feliciano, and J. H. Leitao, J. Bacteriol. 193:15151526, 2011. doi:10.1128/JB.01374-11. S. A. Sousa, C. G. Ramos, L. M. Moreira, and J. H. Leitao, Microbiology 156:896908, 2010. doi:10.1099/mic.0.035139-0. C. G. Ramos, S. A. Sousa, A. M. Grilo, L. Eberl, and J. H. Leitao, Microb. Pathog. 48:168177, 2010. doi: 10.1016/j.micpath.2010.02.006. Therefore, we retract the paper. We deeply regret this situation and apologize for any inconvenience to the editors and readers of Journal of Bacteriology, Microbial Pathogenesis, and Microbiology.
-
Berynskyy M, Morimoto RI, Bukau B, Stengel F, Kirstein J, Szlachcic A, Arnsburg K, Stank A, Scior A, Nillegoda NB, Gao X, Guilbride DL, Aebersold R, Wade RC, Mayer MP
[
Nature,
2015]
Protein aggregates are the hallmark of stressed and ageing cells, and characterize several pathophysiological states. Healthy metazoan cells effectively eliminate intracellular protein aggregates, indicating that efficient disaggregation and/or degradation mechanisms exist. However, metazoans lack the key heat-shock protein disaggregase HSP100 of non-metazoan HSP70-dependent protein disaggregation systems, and the human HSP70 system alone, even with the crucial HSP110 nucleotide exchange factor, has poor disaggregation activity in vitro. This unresolved conundrum is central to protein quality control biology. Here we show that synergic cooperation between complexed J-protein co-chaperones of classes A and B unleashes highly efficient protein disaggregation activity in human and nematode HSP70 systems. Metazoan mixed-class J-protein complexes are transient, involve complementary charged regions conserved in the J-domains and carboxy-terminal domains of each J-protein class, and are flexible with respect to subunit composition. Complex formation allows J-proteins to initiate transient higher order chaperone structures involving HSP70 and interacting nucleotide exchange factors. A network of cooperative class A and B J-protein interactions therefore provides the metazoan HSP70 machinery with powerful, flexible, and finely regulatable disaggregase activity and a further level of regulation crucial for cellular protein quality control.
-
[
New J Phys,
2014]
Many cell movements occur via polymerization of the actin cytoskeleton beneath the plasma membrane at the front of the cell, forming a protrusion called a lamellipodium, while myosin contraction squeezes forward the back of the cell. In what is known as the "molecular clutch" description of cell motility, forward movement results from the engagement of the acto-myosin motor with cell-matrix adhesions, thus transmitting force to the substrate and producing movement. However during cell translocation, clutch engagement is not perfect, and as a result, the cytoskeleton slips with respect to the substrate, undergoing backward (retrograde) flow in the direction of the cell body. Retrograde flow is therefore inversely proportional to cell speed and depends on adhesion and acto-myosin dynamics. Here we asked whether the molecular clutch was a general mechanism by measuring motility and retrograde flow for the Caenorhabditis elegans sperm cell in different adhesive conditions. These cells move by adhering to the substrate and emitting a dynamic lamellipodium, but the sperm cell does not contain an acto-myosin cytoskeleton. Instead the lamellipodium is formed by the assembly of Major Sperm Protein (MSP), which has no biochemical or structural similarity to actin. We find that these cells display the same molecular clutch characteristics as acto-myosin containing cells. We further show that retrograde flow is produced both by cytoskeletal assembly and contractility in these cells. Overall this study shows that the molecular clutch hypothesis of how polymerization is transduced into motility via adhesions is a general description of cell movement regardless of the composition of the cytoskeleton.
-
[
Worm Breeder's Gazette,
1992]
unc-4 LacZ expression in A-type motor neurons David M. Miller and Charles J. Niemeyer, Dept. of Cell Biology, Duke Univ. Medical Ctr, Durham, NC 27710
-
[
Worm Breeder's Gazette,
1994]
Evolution of vulva-formation: Part II: Species with a central vulva Ralf J. Sommer & Paul W. Sternberg, California Institute of Technology, Division of Biology 156-29, Pasadena, CA 91125