[
J Cell Biol,
2012]
In metazoans, fertilization triggers the assembly of an extracellular coat that constitutes the interface between the embryo and its environment. In nematodes, this coat is the eggshell, which provides mechanical rigidity, prevents polyspermy, and is impermeable to small molecules. Using immunoelectron microscopy, we found that the Caenorhabditis elegans eggshell was composed of an outer vitelline layer, a middle chitin layer, and an inner layer containing chondroitin proteoglycans. The switch between the chitin and proteoglycan layers was achieved by internalization of chitin synthase coincident with exocytosis of proteoglycan-containing cortical granules. Inner layer assembly did not make the zygote impermeable as previously proposed. Instead, correlative light and electron microscopy demonstrated that the permeability barrier was a distinct envelope that formed in a separate step that required fatty acid synthesis, the sugar-modifying enzyme PERM-1, and the acyl chain transfer enzyme DGTR-1. These findings delineate the hierarchy of eggshell assembly and define key molecular mechanisms at each step.
[
J Cell Biol,
2006]
Vertebrates produce multiple chondroitin sulfate proteoglycans that play important roles in development and tissue mechanics. In the nematode Caenorhabditis elegans, the chondroitin chains lack sulfate but nevertheless play essential roles in embryonic development and vulval morphogenesis. However, assignment of these functions to specific proteoglycans has been limited by the lack of identified core proteins. We used a combination of biochemical purification, Western blotting, and mass spectrometry to identify nine C. elegans chondroitin proteoglycan core proteins, none of which have homologues in vertebrates or other invertebrates such as Drosophila melanogaster or Hydra vulgaris. CPG-1/CEJ-1 and CPG-2 are expressed during embryonic development and bind chitin, suggesting a structural role in the egg. RNA interference (RNAi) depletion of individual CPGs had no effect on embryonic viability, but simultaneous depletion of CPG-1/CEJ-1 and CPG-2 resulted in multinucleated single-cell embryos. This embryonic lethality phenocopies RNAi depletion of the SQV-5 chondroitin synthase, suggesting that chondroitin chains on these two proteoglycans are required for cytokinesis.