-
[
Redox Rep,
2011]
Calorie restriction (CR) is well established to enhance the lifespan of a wide variety of organisms, although the mechanisms are still being uncovered. Recently, some authors have suggested that CR acts through hormesis, enhancing the production of reactive oxygen species (ROS), activating stress response pathways, and increasing lifespan. Here, we review the literature on the effects of CR and redox state. We find that there is no evidence in rodent models of CR that an increase in ROS production occurs. Furthermore, results in Caenorhabditis elegans and Saccharomyces cerevisiae suggesting that CR increases intracellular ROS are questionable, and probably cannot be resolved until adequate, artifact free, tools for real-time, quantitative, and selective measurements of intracellular ROS are developed. Overall, the largest body of work indicates that CR improves redox state, although it seems improbable that a global improvement in redox state is the mechanism through which CR enhances lifespan.
-
[
Journal of Anti-Aging Medicine,
2001]
The well-known effects of caloric restriction (CR) upon life span have been studied in a number of nonmammalian species, from yeast to fish. Early work focused on determining whether CR could prolong life span, which it does in most organisms thus far examined. More recently, studies done with invertebrates models, including yeast, Caenorhabditis elegans, and Drosophila, have suggested potential mechanistic commonalities with CR. In this review, a survey of data collected from the application of CR to a number of nonmammalian models is presented, as well as the potential molecular overlap arising from work done
-
[
Trends in Genetics,
1997]
Like a molecular bulletin board, the extracellular matrix allows indirect communication between cells during development. For posting messages, soluble molecules from various sources are incorporated into more-or-less stable, matrix polymers surrounding tissues and individual cells. Integrins and other cell surface receptors tether these components and coordinate their assembly. Later, for reading messages, cells can express receptors for particular matrix components. In particular, motile cells and axons use matrix cues originating from path or target cells to control their direction and extent of migration.
-
[
Ageing Res Rev,
2011]
Metallothionein (MT) is a low molecular weight protein with anti-apoptotic properties that has been demonstrated to scavenge free radicals in vitro. MT has not been extensively investigated within the context of aging biology. The purpose of this review, therefore, is to discuss findings on MT that are relevant to basic aging mechanisms and to draw attention to the possible role of MT in pro-longevity interventions. MT is one of just a handful of proteins that, when overexpressed, has been demonstrated to increase mouse lifespan. MT also protects against development of obesity in mice provided a high fat diet as well as diet-induced oxidative stress damage. Abundance of MT is responsive to caloric restriction (CR) and inhibition of the insulin/insulin-like signaling (IIS) pathway, and elevated MT gene expression has been observed in tissues from fasted and CR-fed mice, long-lived dwarf mice, worms maintained under CR conditions, and long-lived
daf-2 mutant worms. The dysregulation of MT in these systems is likely to have tissue-specific effects on aging outcomes. Further investigation will therefore be needed to understand how MT contributes to the response of invertebrates and mice to CR and the endocrine mutations studied by aging researchers.
-
[
Biomed Res Int,
2014]
Calorie restriction (CR), which usually refers to a 20-40% reduction in calorie intake, can effectively prolong lifespan preventing most age-associated diseases in several species. However, recent data from both human and nonhumans point to the ratio of macronutrients rather than the caloric intake as a major regulator of both lifespan and health-span. In addition, specific components of the diet have recently been identified as regulators of some age-associated intracellular signaling pathways in simple model systems. The comprehension of the mechanisms underpinning these findings is crucial since it may increase the beneficial effects of calorie restriction making it accessible to a broader population as well.
-
[
Pflugers Arch,
2010]
Average human life expectancy has progressively increased over many decades largely due to improvements in nutrition, vaccination, antimicrobial agents, and effective treatment/prevention of cardiovascular disease, cancer, etc. Maximal life span, in contrast, has changed very little. Caloric restriction (CR) increases maximal life span in many species, in concert with improvements in mitochondrial function. These effects have yet to be demonstrated in humans, and the duration and level of CR required to extend life span in animals is not realistic in humans. Physical activity (voluntary exercise) continues to hold much promise for increasing healthy life expectancy in humans, but remains to show any impact to increase maximal life span. However, longevity in Caenorhabditis elegans is related to activity levels, possibly through maintenance of mitochondrial function throughout the life span. In humans, we reported a progressive decline in muscle mitochondrial DNA abundance and protein synthesis with age. Other investigators also noted age-related declines in muscle mitochondrial function, which are related to peak oxygen uptake. Long-term aerobic exercise largely prevented age-related declines in mitochondrial DNA abundance and function in humans and may increase spontaneous activity levels in mice. Notwithstanding, the impact of aerobic exercise and activity levels on maximal life span is uncertain. It is proposed that age-related declines in mitochondrial content and function not only affect physical function, but also play a major role in regulation of life span. Regular aerobic exercise and prevention of adiposity by healthy diet may increase healthy life expectancy and prolong life span through beneficial effects at the level of the mitochondrion.
-
Proenca RB, Zhu X, Guo C-B, Plenefisch JD, Spieth J, Hedgecock EM, Norris CR, Scheel JK, Mastwal SS, Vogel BE, Hutter H
[
Science,
2000]
New proteins and modules have been invented throughout evolution. Gene "birth dates" in Caenorhabditis elegans range from the origins of cellular life through adaptation to a soil habitat. Possibly half are "metazoan" genes, having arisen sometime between the yeast-metazoan and nematode-chordate separations. These include basement membrane and cell adhesion molecules implicated in tissue organization. By contrast, epithelial surfaces facing the environment have specialized components invented within the nematode lineage. Moreover, interstitial matrices were likely elaborated within the vertebrate lineage. A strategy for concerted evolution of new gene families, as well as conservation of adaptive genes, may underlie the differences between heterochromatin and euchromatin.
-
[
Cell Res,
2018]
The mitochondrial network is not only required for the production of energy, essential cofactors and amino acids, but also serves as a signaling hub for innate immune and apoptotic pathways. Multiple mechanisms have evolved to identify and combat mitochondrial dysfunction to maintain the health of the organism. One such pathway is the mitochondrial unfolded protein response (UPRmt), which is regulated by the mitochondrial import efficiency of the transcription factor ATFS-1 in C. elegans and potentially orthologous transcription factors in mammals (ATF4, ATF5, CHOP). Upon mitochondrial dysfunction, import of ATFS-1 into mitochondria is reduced, allowing it to be trafficked to the nucleus where it promotes the expression of genes that promote survival and recovery of the mitochondrial network. Here, we discuss recent findings underlying UPRmt signal transduction and how this adaptive transcriptional response may interact with other mitochondrial stress response pathways.Cell Research advance online publication 9 February 2018; doi:10.1038/cr.2018.16.
-
[
Technol Cancer Res Treat,
2007]
While much of the third world starves, many in the first world are undergoing an obesity epidemic, and the related epidemics of type II diabetes, heart disease, and other diseases associated with obesity. The amount of economic wealth being directly related to a decline in health by obesity is ironic because rich countries contribute billions of dollars to improve the health of their citizens. Nevertheless, nutritional experiments in model organisms such as yeast, C. elegans, Drosophila, and mice confirm that "caloric restriction" (CR), which is defined generally as a 30-40% decrease in caloric intake, a famine-like condition for humans seen only in the poorest of countries, promotes good health and increases longevity in model organisms. Because caloric restriction, and dieting in general, requires a great deal of will power to deal with the feelings of deprivation, many fad diets, such as the Atkins, South Beach, and Protein Power, have been developed which allow people to lose weight purportedly without the severe feelings of deprivation. However, the long-term effects of such fad diets are not known and few experiments have been performed in the laboratory to investigate possible side affects and adverse consequences. In this paper, we review studies with fad-like dietary conditions in humans and model organisms, and we propose a "Dietary Ames Test" to rapidly screen fad diets, dietary supplements, and drugs for potential long-term health consequences in model organisms.