[
J Cell Sci,
2014]
How signaling domains form is an important, yet largely unexplored question. Here, we show that ciliary proteins help establish two contiguous, yet distinct cyclic GMP (cGMP) signaling compartments in Caenorhabditis elegans thermosensory AFD neurons. One compartment, a bona fide cilium, is delineated by proteins associated with Bardet-Biedl syndrome (BBS), Meckel syndrome and nephronophthisis at its base, and requires NPHP-2 (known as inversin in mammals) to anchor a cGMP-gated ion channel within the proximal ciliary region. The other, a subcompartment with profuse microvilli and a different lipid environment, is separated from the dendrite by a cellular junction and requires BBS-8 and DAF-25 (known as Ankmy2 in mammals) for correct localization of guanylyl cyclases needed for thermosensation. Consistent with a requirement for a membrane diffusion barrier at the subcompartment base, we reveal the unexpected presence of ciliary transition zone proteins where no canonical transition zone ultrastructure exists. We propose that differential compartmentalization of signal transduction components by ciliary proteins is important for the functions of ciliated sensory neurons.
[
J Cell Sci,
2000]
Septins have been shown to play important roles in cytokinesis in diverse organisms ranging from yeast to mammals. In this study, we show that both the
unc-59 and
unc-61 loci encode Caenorhabditis elegans septins. Genomic database searches indicate that
unc-59 and
unc-61 are probably the only septin genes in the C. elegans genome. UNC-59 and UNC-61 localize to the leading edge of cleavage furrows and eventually reside at the midbody. Analysis of
unc-59 and
unc-61 mutants revealed that each septin requires the presence of the other for localization to the cytokinetic furrow. Surprisingly,
unc-59 and
unc-61 mutants generally have normal embryonic development; however, defects were observed in post-embryonic development affecting the morphogenesis of the vulva, male tail, gonad, and sensory neurons. These defects can be at least partially attributed to failures in post-embryonic cytokineses although our data also suggest other possible roles for septins.
unc-59 and
unc-61 double mutants show similar defects to each of the single mutants.
[
Biochemistry,
1987]
The major intestinal esterase from the nematode Caenorhabditis elegans has been purified to essential homogeneity. Starting from whole worms, the overall purification is 9000-fold with a 10% recovery of activity. The esterase is a single polypeptide chain of Mr 60,000 and is stoichiometrically inhibited by organophosphates. Substrate preferences and inhibition patterns classify the enzyme as a carboxylesterase (EC 3.1.1.1), but the physiological function is unknown. The sequence of 13 amino acid residues at the esterase N- terminus has been determined. This partial sequence shows a surprisingly high degree of similarity to the N-terminal sequence of two carboxylesterases recently isolated from Drosophila mojavensis [Pen, J., van Beeumen, J., & Beintema, J. J. (1986) Biochem. J. 238, 691-699].
[
International Worm Meeting,
2017]
Extracellular vesicles are emerging as an important aspect of intercellular communication by delivering a parcel of proteins, lipids even nucleic acids to specific target cells over short or long distances (Maas 2017). A subset of C. elegans ciliated neurons release EVs to the environment and elicit changes in male behaviors in a cargo-dependent manner (Wang 2014, Silva 2017). Our studies raise many questions regarding these social communicating EV devices. Why is the cilium the donor site? What mechanisms control ciliary EV biogenesis? How are bioactive functions encoded within EVs? EV detection is a challenge and obstacle because of their small size (100nm). However, we possess the first and only system to visualize and monitor GFP-tagged EVs in living animals in real time. We are using several approaches to define the properties of an EV-releasing neuron (EVN) and to decipher the biology of ciliary-released EVs. To identify mechanisms regulating biogenesis, release, and function of ciliary EVs we took an unbiased transcriptome approach by isolating EVNs from adult worms and performing RNA-seq. We identified 335 significantly upregulated genes, of which 61 were validated by GFP reporters as expressed in EVNs (Wang 2015). By characterizing components of this EVN parts list, we discovered new components and pathways controlling EV biogenesis, EV shedding and retention in the cephalic lumen, and EV environmental release. We also identified cell-specific regulators of EVN ciliogenesis and are currently exploring mechanisms regulating EV cargo sorting. Our genetically tractable model can make inroads where other systems have not, and advance frontiers of EV knowledge where little is known. Maas, S. L. N., Breakefield, X. O., & Weaver, A. M. (2017). Trends in Cell Biology. Silva, M., Morsci, N., Nguyen, K. C. Q., Rizvi, A., Rongo, C., Hall, D. H., & Barr, M. M. (2017). Current Biology. Wang, J., Kaletsky, R., Silva, M., Williams, A., Haas, L. A., Androwski, R. J., Landis JN, Patrick C, Rashid A, Santiago-Martinez D, Gravato-Nobre M, Hodgkin J, Hall DH, Murphy CT, Barr, M. M. (2015).Current Biology. Wang, J., Silva, M., Haas, L. A., Morsci, N. S., Nguyen, K. C. Q., Hall, D. H., & Barr, M. M. (2014). Current Biology.
[
J Bacteriol,
2014]
Volume 195, no. 16, p. 35143523, 2013. A number of problems related to images published in this paper have been brought to our attention. Figure 1D contains duplicated images in lanes S and LE, and Fig. 4D and 6B contain images previously published in articles in this journal and in Microbiology and Microbial Pathogenesis, i.e., the following: C. G. Ramos, S. A. Sousa, A. M. Grilo, J. R. Feliciano, and J. H. Leitao, J. Bacteriol. 193:15151526, 2011. doi:10.1128/JB.01374-11. S. A. Sousa, C. G. Ramos, L. M. Moreira, and J. H. Leitao, Microbiology 156:896908, 2010. doi:10.1099/mic.0.035139-0. C. G. Ramos, S. A. Sousa, A. M. Grilo, L. Eberl, and J. H. Leitao, Microb. Pathog. 48:168177, 2010. doi: 10.1016/j.micpath.2010.02.006. Therefore, we retract the paper. We deeply regret this situation and apologize for any inconvenience to the editors and readers of Journal of Bacteriology, Microbial Pathogenesis, and Microbiology.
Berynskyy M, Morimoto RI, Bukau B, Stengel F, Kirstein J, Szlachcic A, Arnsburg K, Stank A, Scior A, Nillegoda NB, Gao X, Guilbride DL, Aebersold R, Wade RC, Mayer MP
[
Nature,
2015]
Protein aggregates are the hallmark of stressed and ageing cells, and characterize several pathophysiological states. Healthy metazoan cells effectively eliminate intracellular protein aggregates, indicating that efficient disaggregation and/or degradation mechanisms exist. However, metazoans lack the key heat-shock protein disaggregase HSP100 of non-metazoan HSP70-dependent protein disaggregation systems, and the human HSP70 system alone, even with the crucial HSP110 nucleotide exchange factor, has poor disaggregation activity in vitro. This unresolved conundrum is central to protein quality control biology. Here we show that synergic cooperation between complexed J-protein co-chaperones of classes A and B unleashes highly efficient protein disaggregation activity in human and nematode HSP70 systems. Metazoan mixed-class J-protein complexes are transient, involve complementary charged regions conserved in the J-domains and carboxy-terminal domains of each J-protein class, and are flexible with respect to subunit composition. Complex formation allows J-proteins to initiate transient higher order chaperone structures involving HSP70 and interacting nucleotide exchange factors. A network of cooperative class A and B J-protein interactions therefore provides the metazoan HSP70 machinery with powerful, flexible, and finely regulatable disaggregase activity and a further level of regulation crucial for cellular protein quality control.