-
[
WormBook,
2005]
Nervous systems are characterized by an astounding degree of cellular diversity. The nematode Caenorhabditis elegans has served as a valuable model system to define the genetic programs that serve to generate cellular diversity in the nervous system. This review discusses neuronal diversity in C. elegans and provides an overview of the molecular mechanisms that define and specify neuronal cell types in C. elegans.
-
[
WormBook,
2007]
The mechanism of action of volatile anesthetics remains an enigma, despite their worldwide use. The nematode C. elegans has served as an excellent model to unravel this mystery. Genes and gene sets that control the behavior of the animal in volatile anesthetics have been identified, using multiple endpoints to mimic the phenomenon of anesthesia in man. Some of these studies have clear translational implications in more complicated organisms.
-
[
Genetics,
2024]
To understand the function of cells such as neurons within an organism, it can be instrumental to inhibit cellular function, or to remove the cell (type) from the organism, and thus to observe the consequences on organismic and/or circuit function and animal behavior. A range of approaches and tools were developed and used over the past few decades that act either constitutively or acutely and reversibly, in systemic or local fashion. These approaches make use of either drugs or genetically encoded tools. Also, there are acutely acting inhibitory tools that require an exogenous trigger like light. Here, we give an overview of such methods developed and used in the nematode Caenorhabditis elegans.
-
[
WormBook,
2007]
Strongyloides is a genus of parasitic nematodes, which, unusually, has a free-living adult generation. Here we introduce the biology of this genus, especially the fascinating, but complex, life-cycle together with an overview of the taxonomy, morphology, genetics and genomics of this genus.
-
[
WormBook,
2007]
The nematode cuticle is an extremely flexible and resilient exoskeleton that permits locomotion via attachment to muscle, confers environmental protection and allows growth by molting. It is synthesised five times, once in the embryo and subsequently at the end of each larval stage prior to molting. It is a highly structured extra-cellular matrix (ECM), composed predominantly of cross-linked collagens, additional insoluble proteins termed cuticlins, associated glycoproteins and lipids. The cuticle collagens are encoded by a large gene family that are subject to strict patterns of temporal regulation. Cuticle collagen biosynthesis involves numerous co- and post-translational modification, processing, secretion and cross-linking steps that in turn are catalysed by specific enzymes and chaperones. Mutations in individual collagen genes and their biosynthetic pathway components can result in a range of defects from abnormal morphology (dumpy and blister) to embryonic and larval death, confirming an essential role for this structure and highlighting its potential as an ECM experimental model system.
-
[
WormBook,
2005]
C. elegans has emerged as a powerful genetic model organism in which to study synaptic function. Most synaptic proteins in the C. elegans genome are highly conserved and mutants can be readily generated by forward and reverse genetics. Most C. elegans synaptic protein mutants are viable affording an opportunity to study the functional consequences in vivo. Recent advances in electrophysiological approaches permit functional analysis of mutant synapses in situ. This has contributed to an already powerful arsenal of techniques available to study synaptic function in C. elegans. This review highlights C. elegans mutants affecting specific stages of the synaptic vesicle cycle, with emphasis on studies conducted at the neuromuscular junction.
-
[
WormBook,
2007]
Heterorhabditis bacteriophora is an entomopathogenic nematode (EPN) mutually associated with the enteric bacterium, Photorhabdus luminescens, used globally for the biological control of insects. Much of the previous research concerning H. bacteriophora has dealt with applied aspects related to biological control. However, H. bacteriophora is an excellent model to investigate fundamental processes such as parasitism and mutualism in addition to its comparative value to Caenorhabditis elegans. In June 2005, H. bacteriophora was targeted by NHGRI for a high quality genome sequence. This chapter summarizes the biology of H. bacteriophora in common and distinct from C. elegans, as well as the status of the genome project.
-
[
WormBook,
2006]
In the last decade, nematodes other than C. elegans have been studied intensively in evolutionary developmental biology. A few species have been developed as satellite systems for more detailed genetic and molecular studies. One such satellite species is the diplogastrid nematode Pristionchus pacificus. Here, I provide an overview about the biology, phylogeny, ecology, genetics and genomics of P. pacificus.
-
[
WormBook,
2006]
Form follows function, and this maxim is particularly true for the nematode sperm cell. Motility is essential for fertilization, and the process of spermatogenesis culminates in the production of a crawling spermatozoon with an extended pseudopod. However, the morphological similarity to amoeboid cells of other organisms is not conserved at the molecular level. Instead of utilizing the actin cytoskeleton and motor proteins, the pseudopod moves via the regulated assembly and disassembly of filaments composed of the major sperm protein (MSP). The current work reviews the structure and dynamics of MSP filament formation, the critical role of pH in MSP assembly, and the recent identification of components that regulate this process. The combination of cytological, biochemical, and genetic approaches in this relatively simple system make nematode sperm an attractive model for investigating the mechanics of amoeboid cell motility.
-
[
WormBook,
2005]
Nematodes are the most abundant type of animal on earth, and live in hot springs, polar ice, soil, fresh and salt water, and as parasites of plants, vertebrates, insects, and other nematodes. This extraordinary ability to adapt, which hints at an underlying genetic plasticity, has long fascinated biologists. The fully sequenced genomes of Caenorhabditis elegans and Caenorhabditis briggsae, and ongoing sequencing projects for eight other nematodes, provide an exciting opportunity to investigate the genomic changes that have enabled nematodes to invade many different habitats. Analyses of the C. elegans and C. briggsae genomes suggest that these include major changes in gene content; as well as in chromosome number, structure and size. Here I discuss how the data set of ten genomes will be ideal for tackling questions about nematode evolution, as well as questions relevant to all eukaryotes.