-
[
Neural Comput,
2018]
Biological networks have long been known to be modular, containing sets of nodes that are highly connected internally. Less emphasis, however, has been placed on understanding how intermodule connections are distributed within a network. Here, we borrow ideas from engineered circuit design and study Rentian scaling, which states that the number of external connections between nodes in different modules is related to the number of nodes inside the modules by a power-law relationship. We tested this property in a broad class of molecular networks, including protein interaction networks for six species and gene regulatory networks for 41 human and 25 mouse cell types. Using evolutionarily defined modules corresponding to known biological processes in the cell, we found that all networks displayed Rentian scaling with a broad range of exponents. We also found evidence for Rentian scaling in functional modules in the Caenorhabditis elegans neural network, but, interestingly, not in three different social networks, suggesting that this property does not inevitably emerge. To understand how such scaling may have arisen evolutionarily, we derived a new graph model that can generate Rentian networks given a target Rent exponent and a module decomposition as inputs. Overall, our work uncovers a new principle shared by engineered circuits and biological networks.
-
[
International Worm Meeting,
2019]
Patterned neural activity has been shown to underlie the perception of olfactory stimuli. However, most work to date has focused on early stages of sensory processing, and thus it is unclear how the rest of the nervous system interprets information transduced at the sensory periphery. Here, we used whole-brain calcium imaging of thirty immobilized Caenorhabditis elegans to study how different chemical stimuli induce unique patterns of neural activity. We exposed groups of three worms to one of ten conditions: benzaldehyde (BZ), diacetyl (DA), isoamyl alcohol (IAA), 2-nonanone (NN), or NaCl, at either high or low concentrations. We generated networks that describe the functional interactions between neurons using mutual information, and extracted 22 graph-theoretic properties that characterize the network's functional integration, segregation, and resilience. We identified a few properties that can distinguish between low and high stimulus concentrations, one between attractants (BZ, DA, IAA, and a low concentration of NaCl) and repellents (NN and a high concentration of NaCl), and a third set of properties that can accurately classify the attractants. High concentrations of chemical stimuli tend to induce a network that is more functionally segregated, while repellents induce a network with a shorter path between any two neurons. Furthermore, attractants can be grouped by three different properties - the centrality of an average neuron, how often a strongly connected neuron is connected to weakly connected neurons, and the distance between the furthest apart pair of neurons. Importantly, all of these properties have values that are different from those obtained by analyzing the structural connectivity between neurons in the head of the worm. Thus, we conclude that the structural connectome provides a rich substrate that is employed in very distinct ways to support perception and, ultimately, behavior. Many of these graph-theoretic features deal with how efficiently information is transmitted throughout the C. elegans nervous system, and may reflect the saliency of the stimulus in question.
-
[
PLoS Comput Biol,
2021]
Nervous systems extract and process information from the environment to alter animal behavior and physiology. Despite progress in understanding how different stimuli are represented by changes in neuronal activity, less is known about how they affect broader neural network properties. We developed a framework for using graph-theoretic features of neural network activity to predict ecologically relevant stimulus properties, in particular stimulus identity. We used the transparent nematode, Caenorhabditis elegans, with its small nervous system to define neural network features associated with various chemosensory stimuli. We first immobilized animals using a microfluidic device and exposed their noses to chemical stimuli while monitoring changes in neural activity of more than 50 neurons in the head region. We found that graph-theoretic features, which capture patterns of interactions between neurons, are modulated by stimulus identity. Further, we show that a simple machine learning classifier trained using graph-theoretic features alone, or in combination with neural activity features, can accurately predict salt stimulus. Moreover, by focusing on putative causal interactions between neurons, the graph-theoretic features were almost twice as predictive as the neural activity features. These results reveal that stimulus identity modulates the broad, network-level organization of the nervous system, and that graph theory can be used to characterize these changes.
-
[
J Biol Chem,
2007]
The biological methyl donor, S adenosylmethionine (AdoMet), can exist in two diastereoisomeric states with respect to its sulfonium ion. The "S" configuration, (S,S)AdoMet, is the only form that is produced enzymatically as well as the only form used in almost all biological methylation reactions. Under physiological conditions, however, the sulfonium ion can spontaneously racemize to the "R" form, producing (R,S)AdoMet. As of yet, (R,S)AdoMet has no known physiological function and may inhibit cellular reactions. In this study, two enzymes have been found in Saccharomyces cerevisiae that are capable of recognizing (R,S)AdoMet and using it to methylate homocysteine to form methionine. These enzymes are the products of the SAM4 and MHT1 genes, previously identified as homocysteine methyltransferases dependent upon AdoMet and S-methylmethionine respectively. We find here that Sam4 recognizes both (S,S) and (R,S)AdoMet, but its activity is much higher with the R,S form. Mht1 reacts with only the R,S form of AdoMet while no activity is seen with the S,S form. R,S-specific homocysteine methyltransferase activity is also shown here to occur in extracts of Arabidopsis thaliana, Drosophila melanogaster, and Caenorhabditis elegans, but has not been detected in several tissue extracts of Mus musculus. Such activity may function to prevent the accumulation of (R,S)AdoMet in these organisms.
-
Lou Y, Haque A, Freyzon Y, Farese RV, Terry-Kantor E, Hofbauer HF, Termine D, Welte MA, Barrasa MI, Imberdis T, Noble T, Lindquist S, Clish CB, Jaenisch R, Pincus D, Nuber S, Sandoe J, Kohlwein SD, Kim TE, Ho GPH, Ramalingam N, Walther TC, Baru V, Selkoe D, Srinivasan S, Landgraf D, Soldner F, Dettmer U, Fanning S, Becuwe M, Newby G
[
Mol Cell,
2018]
In Parkinson's disease (PD), -synuclein (S) pathologically impacts the brain, a highly lipid-rich organ. We investigated how alterations in S or lipid/fattyacid homeostasis affect each other. Lipidomic profiling of human S-expressing yeast revealed increases in oleic acid (OA, 18:1), diglycerides, and triglycerides. These findings were recapitulated in rodent and human neuronal models of S dyshomeostasis (overexpression; patient-derived triplication or E46K mutation; E46K mice). Preventing lipid droplet formation or augmenting OA increased S yeast toxicity; suppressing the OA-generating enzyme stearoyl-CoA-desaturase (SCD) was protective. Genetic or pharmacological SCD inhibition ameliorated toxicity in S-overexpressing rat neurons. In a C.elegans model, SCD knockout prevented S-induced dopaminergic degeneration. Conversely, we observed detrimental effects of OA on S homeostasis: in human neural cells, excess OA caused S inclusion formation, which was reversed by SCD inhibition. Thus, monounsaturated fatty acid metabolism is pivotal for S-induced neurotoxicity, and inhibiting SCD represents a novel PD therapeutic approach.
-
[
PLoS One,
2017]
In this paper, the metabolic activity in single and dual species biofilms of Staphylococcus epidermidis and Staphylococcus aureus isolates was investigated. Our results demonstrated that there was less metabolic activity in dual species biofilms compared to S. aureus biofilms. However, this was not observed if S. aureus and S. epidermidis were obtained from the same sample. The largest effect on metabolic activity was observed in biofilms of S. aureus Mu50 and S. epidermidis ET-024. A transcriptomic analysis of these dual species biofilms showed that urease genes and genes encoding proteins involved in metabolism were downregulated in comparison to monospecies biofilms. These results were subsequently confirmed by phenotypic assays. As metabolic activity is related to acid production, the pH in dual species biofilms was slightly higher compared to S. aureus Mu50 biofilms. Our results showed that S. epidermidis ET-024 in dual species biofilms inhibits metabolic activity of S. aureus Mu50, leading to less acid production. As a consequence, less urease activity is required to compensate for low pH. Importantly, this effect was biofilm-specific. Also S. aureus Mu50 genes encoding virulence-associated proteins (Spa, SplF and Dps) were upregulated in dual species biofilms compared to monospecies biofilms and using Caenorhabditis elegans infection assays, we demonstrated that more nematodes survived when co-infected with S. epidermidis ET-024 and S. aureus mutants lacking functional spa, splF or dps genes, compared to nematodes infected with S. epidermidis ET-024 and wild- type S. aureus. Finally, S. epidermidis ET-024 genes encoding resistance to oxacillin, erythromycin and tobramycin were upregulated in dual species biofilms and increased resistance was subsequently confirmed. Our data indicate that both species in dual species biofilms of S. epidermidis and S. aureus influence each other's behavior, but additional studies are required necessary to elucidate the exact mechanism(s) involved.
-
[
Pathog Dis,
2014]
Due to the resistance of Staphylococcus aureus to several antibiotics, treatment of S. aureus infections is often difficult. As an alternative to conventional antibiotics, the field of bacterial interference is investigated. Staphylococcus epidermidis produces a serine protease (Esp) which inhibits S. aureus biofilm formation and which degrades S. aureus biofilms. In this study, we investigated the protease production of 114 S. epidermidis isolates, obtained from biofilms on endotracheal tubes (ET). Most of the S. epidermidis isolates secreted a mixture of serine, cysteine and metalloproteases. We found a link between high protease production by S. epidermidis and the absence of S. aureus in ET biofilms obtained from the same patient. Treating S. aureus biofilms with the supernatant (SN) of the most active protease producing S. epidermidis isolates resulted in a significant biomass decrease compared to untreated controls, while the number of metabolically active cells was not affected. The effect on the biofilm biomass was mainly due to serine proteases. Staphylococcus aureus biofilms treated with the SN of protease producing S. epidermidis were thinner with almost no extracellular matrix. An increased survival of Caenorhabditis elegans, infected with S. aureus Mu50, was observed when the SN of protease positive S. epidermidis was added.
-
Haass C, Hegermann J, Giese A, Eimer S, Kamp F, Lutz AK, Nuscher B, Wender N, Brunner B, Winklhofer KF, Exner N, Beyer K, Bartels T
[
EMBO J,
2010]
Aggregation of -synuclein (S) is involved in the pathogenesis of Parkinson's disease (PD) and a variety of related neurodegenerative disorders. The physiological function of S is largely unknown. We demonstrate with in vitro vesicle fusion experiments that S has an inhibitory function on membrane fusion. Upon increased expression in cultured cells and in Caenorhabditis elegans, S binds to mitochondria and leads to mitochondrial fragmentation. In C. elegans age-dependent fragmentation of mitochondria is enhanced and shifted to an earlier time point upon expression of exogenous S. In contrast, siRNA-mediated downregulation of S results in elongated mitochondria in cell culture. S can act independently of mitochondrial fusion and fission proteins in shifting the dynamic morphologic equilibrium of mitochondria towards reduced fusion. Upon cellular fusion, S prevents fusion of differently labelled mitochondrial populations. Thus, S inhibits fusion due to its unique membrane interaction. Finally, mitochondrial fragmentation induced by expression of S is rescued by coexpression of PINK1, parkin or DJ-1 but not the PD-associated mutations PINK1 G309D and parkin 1-79 or by DJ-1 C106A.
-
[
MicroPubl Biol,
2021]
For El Mouridi, S; AlHarbi, S; Frkjr-Jensen, C (2021). A histamine-gated channel is an efficient negative selection marker for C. elegans transgenesis. microPublication Biology. 10.17912/micropub.biology.000349.
-
[
Mol Cell Biol,
1997]
The cDNAs and genes encoding the intron lariat-debranching enzyme were isolated from the nematode Caenorhabditis elegans and the fission yeast Schizosaccharomyces pombe based on their homology with the Saccharomyces cerevisiae gene. The cDNAs were shown to be functional in an interspecific complementation experiment; they can complement an S. cerevisiae
dbr1 null mutant. About 2.5% of budding yeast S. cerevisiae genes have introns, and the accumulation of excised introns in a
dbr1 null mutant has little effect on cell growth. In contrast, many S. pombe genes contain introns, and often multiple introns per gene, so that S. pombe is estimated to contain approximately 40 times as many introns as S. cerevisiae. The S. pombe
dbr1 gene was disrupted and shown to be nonessential. Like the S. cerevisiae mutant, the S. pombe null mutant accumulated introns to high levels, indicating that intron lariat debranching represents a rate-limiting step in intron degradation in both species. Unlike the S. cerevisiae mutant, the S. pombe
dbr1::
leu1+ mutant had a severe growth defect and exhibited an aberrant elongated cell shape in addition to an intron accumulation phenotype. The growth defect of the S. pombe
dbr1::
leu1+ strain suggests that debranching activity is critical for efficient intron RNA degradation and that blocking this pathway interferes with cell growth.