-
[
Methods Mol Biol,
2012]
Fourier transform infrared (FTIR) microspectroscopy is a powerful tool for the study of complex biological systems. Indeed, it is employed to characterize intact cells, tissues, and whole model organisms such as nematodes, since it allows to obtain a chemical fingerprint of the sample under investigation, giving information on the molecular composition and structures. The successful application of this technique for the in situ study of biological processes requires specific sample preparations, in order to obtain reliable and reproducible results. In the present work, we illustrate the optimized procedures to prepare biological samples for IR measurements and the method to collect and analyze their FTIR spectra. In particular, we describe here the investigations on bacterial cells, intact eukaryotic cells, and whole intact nematode specimens.
-
[
FEBS Lett,
2004]
We report the results of a microspectroscopy study on the Fourier transform infrared (FT-IR) absorption spectra of Caenorhabditis elegans, collected from the different parts of a single intact specimen - pharynx, intestine and tail regions. The principal absorption bands were assigned to the molecular species present in C. elegans, with an excellent reproducibility for the pharynx spectrum. These results enabled us to explore if FT-IR microspectroscopy could offer a new tool for nematode identification. As an example, the discrimination among four well characterised nematode taxa is reported. The FT-IR results completely match those obtained by Blaxter and colleagues through molecular biology [Nature 392 (1998) 71].
-
[
Neurobiol Dis,
2010]
The accumulation and deposition of amyloid beta (A) peptide in extracellular dense plaques in the brain is a key phase in Alzheimer's disease (AD). Small oligomeric forms of A are responsible for the toxicity and the early cognitive impairment observed in patients before the amyloid plaque deposits appear. It is essential for the development of an efficient cure for AD to identify compounds that interfere with A aggregation, counteracting the molecular mechanisms involved in conversion of the monomeric amyloid protein into oligomeric and fibrillar forms. Tetracyclines have been proposed for AD therapy, although their effects on the aggregation of A protein, particularly their ability to interact in vivo with the A oligomers and/or aggregates, remain to be understood. Using transgenic Caenorhabditis elegans as a simplified invertebrate model of AD, we evaluated the ability of tetracyclines to interfere with the sequence of events leading to A proteotoxicity. The drugs directly interact with the A assemblies in vivo and reduce A oligomer deposition, protecting C. elegans from oxidative stress and the onset of the paralysis phenotype. These effects were specific, dose-related and not linked to any antibiotic activity, suggesting that the drugs might offer an effective therapeutic strategy to target soluble A aggregates.
-
[
Biochim Biophys Acta Gen Subj,
2018]
BACKGROUND: We have previously demonstrated the neuroprotective activity of tetracycline on a Spinocerebellar Ataxia 3 nematode model. Here, we present the screening of a small library of tetracycline congeners in order to identify the most effective compound in preventing ataxin-3 aggregation. METHODS: We performed the assays on the Josephin Domain as it is directly involved in the onset of fibrillation. We used thioflavin T and solubility assays to spot out the most effective tetracycline congeners; Fourier transform infrared and NMR spectroscopies to characterize their mode of action. We employed an ataxic Caenorhabditis elegans model to evaluate the pharmacological efficacy of tetracycline congeners. RESULTS: Methacycline was identified as the most effective compound. Like tetracycline, methacycline neither significantly affected the aggregation kinetics nor did it change the secondary structures of the final aggregates but increased the solubility of the aggregated species. Saturation transfer NMR experiments demonstrated methacycline capability to only bind the oligomeric species of Josephin Domain. Competition assays also showed that methacycline binds to the Josephin Domain more tightly than tetracycline. The treatment with methacycline induced a significant improvement in motility and locomotion of the transgenic C. elegans without changing its lifespan. The efficacy was distinctly stronger than that of tetracycline. Noteworthy, unlike tetracycline, methacycline was able to retard aging-related decline in motility of even the healthy worms used. CONCLUSIONS: The apparent absence of toxic effects displayed by methacycline, along with its stronger efficacy in contrasting expanded ataxin-3 toxicity, makes it a possible candidate for a chronic treatment of the disease.
-
Relini A, Tortora P, Gatta E, De Gioia L, Airoldi C, Natalello A, Vertemara J, Visentin C, Penco A, Pellistri F, Regonesi ME, Bonanomi M
[
Hum Mol Genet,
2017]
The protein ataxin-3 (ATX3) triggers an amyloid-related neurodegenerative disease when its polyglutamine stretch is expanded beyond a critical threshold. We formerly demonstrated that the polyphenol epigallocatechin-3-gallate (EGCG) could redirect amyloid aggregation of a full-length, expanded ATX3 (ATX3-Q55) towards non-toxic, soluble, SDS-resistant aggregates. Here, we have characterized other related phenol compounds, although smaller in size, i.e., (-)-epigallocatechin gallate (EGC), and gallic acid (GA). We analyzed the aggregation pattern of ATX3-Q55 and of the N-terminal globular Josephin domain (JD) by assessing the time course of the soluble protein, as well its structural features by FTIR and AFM, in the presence and the absence of the mentioned compounds. All of them redirected the aggregation pattern towards soluble, SDS-resistant aggregates. They also prevented the appearance of ordered side-chain hydrogen bonding in ATX3-Q55, which is the hallmark of polyQ-related amyloids. Molecular docking analyses on the JD highlighted three interacting regions, including the central, aggregation-prone one. All three compounds bound to each of them, although with different patterns. This might account for their capability to prevent amyloidogenesis. Saturation transfer difference NMR experiments also confirmed EGCG and EGC binding to monomeric JD. ATX3-Q55 pre-incubation with any of the three compound prevented its calcium-influx-mediated cytotoxicity towards neural cells. Finally, all the phenols significantly reduced toxicity in a transgenic Caenorhabditis elegans strain expressing an expanded ATX3. Overall, our results show that the three polyphenols act in a substantially similar manner. GA, however, might be more suitable for antiamyloid treatments due to its simpler structure and higher chemical stability.
-
Bonanomi M, Penco A, Regonesi ME, Natalello A, Pastori V, Doglia SM, Colombo G, Malabarba MG, Visentin C, Relini A, Cornelli G, Tortora P
[
Hum Mol Genet,
2014]
The polyglutamine (polyQ)-containing protein ataxin-3 (AT3) triggers the neurodegenerative disease spinocerebellar ataxia type 3 (SCA3) when its polyQ tract is expanded beyond a critical length. This results in protein aggregation and generation of toxic oligomers and fibrils. Currently, no effective treatment is available for such and other polyQ diseases. Therefore, plenty of investigations are being carried on to assess the mechanism of action and the therapeutic potential of anti-amyloid agents. The polyphenol compound epigallocatechin-3-gallate (EGCG) and tetracycline have been shown to exert some effect in preventing fibrillogenesis of amyloidogenic proteins. Here, we have incubated an expanded AT3 variant with either compound to assess their effects on the aggregation pattern. The process was monitored by atomic force microscopy and Fourier transform infrared spectroscopy. Whereas in the absence of any treatment, AT3 gives rise to amyloid -rich fibrils, whose hallmark is the typical glutamine side-chain hydrogen bonding, when incubated in the presence of EGCG it generated soluble, SDS-resistant aggregates, much poorer in -sheets and devoid of any ordered side-chain hydrogen bonding. These are off-pathway species that persist until the latest incubation time and are virtually absent in the control sample. In contrast, tetracycline did not produce major alterations in the structural features of the aggregated species compared with the control, but substantially increased their solubility. Both compounds significantly reduced toxicity, as shown by the MTT assay in COS-7 cell line and in a transgenic Caenorhabditis elegans strain expressing in the nervous system an AT3 expanded variant in fusion with GFP.
-
Pennington PR, Heistad RM, Nyarko JNK, Barnes JR, Bolanos MAC, Parsons MP, Knudsen KJ, De Carvalho CE, Leary SC, Mousseau DD, Buttigieg J, Maley JM, Quartey MO
[
Sci Rep,
2021]
The pool of -Amyloid (A) length variants detected in preclinical and clinical Alzheimer disease (AD) samples suggests a diversity of roles for A peptides. We examined how a naturally occurring variant, e.g. A(1-38), interacts with the AD-related variant, A(1-42), and the predominant physiological variant, A(1-40). Atomic force microscopy, Thioflavin T fluorescence, circular dichroism, dynamic light scattering, and surface plasmon resonance reveal that A(1-38) interacts differently with A(1-40) and A(1-42) and, in general, A(1-38) interferes with the conversion of A(1-42) to a -sheet-rich aggregate. Functionally, A(1-38) reverses the negative impact of A(1-42) on long-term potentiation in acute hippocampal slices and on membrane conductance in primary neurons, and mitigates an A(1-42) phenotype in Caenorhabditis elegans. A(1-38) also reverses any loss of MTT conversion induced by A(1-40) and A(1-42) in HT-22 hippocampal neurons and APOE 4-positive human fibroblasts, although the combination of A(1-38) and A(1-42) inhibits MTT conversion in APOE 4-negative fibroblasts. A greater ratio of soluble A(1-42)/A(1-38) [and A(1-42)/A(1-40)] in autopsied brain extracts correlates with an earlier age-at-death in males (but not females) with a diagnosis of AD. These results suggest that A(1-38) is capable of physically counteracting, potentially in a sex-dependent manner, the neuropathological effects of the AD-relevant A(1-42).
-
[
Front Pharmacol,
2020]
Oligomeric assembly of Amyloid- (A) is the main toxic species that contribute to early cognitive impairment in Alzheimer's patients. Therefore, drugs that reduce the formation of A oligomers could halt the disease progression. In this study, by using transgenic <i>Caenorhabditis elegans</i> model of Alzheimer's disease, we investigated the effects of frondoside A, a well-known sea cucumber <i>Cucumaria frondosa</i> saponin with anti-cancer activity, on A aggregation and proteotoxicity. The results showed that frondoside A at a low concentration of 1 M significantly delayed the worm paralysis caused by A aggregation as compared with control group. In addition, the number of A plaque deposits in transgenic worm tissues was significantly decreased. Frondoside A was more effective in these activities than ginsenoside-Rg3, a comparable ginseng saponin. Immunoblot analysis revealed that the level of small oligomers as well as various high molecular weights of A species in the transgenic <i>C. elegans</i> were significantly reduced upon treatment with frondoside A, whereas the level of A monomers was not altered. This suggested that frondoside A may primarily reduce the level of small oligomeric forms, the most toxic species of A. Frondoside A also protected the worms from oxidative stress and rescued chemotaxis dysfunction in a transgenic strain whose neurons express A. Taken together, these data suggested that low dose of frondoside A could protect against A-induced toxicity by primarily suppressing the formation of A oligomers. Thus, the molecular mechanism of how frondoside A exerts its anti-A aggregation should be studied and elucidated in the future.
-
Felli I, Natalello A, Ferrie JJ, Daniels MJ, Haney CM, Rhoades E, Sainati V, Krol ES, Ischiropoulos H, Caldwell GA, Gould NS, Pan B, Schiavina M, Nourse JB, Caldwell KA, Uversky VN, Pierattelli R, Grandori R, Petersson EJ, Moons R, Kim H, Murrali MG, Sobott F
[
Sci Rep,
2019]
Growing evidence implicates -synuclein aggregation as a key driver of neurodegeneration in Parkinson's disease (PD) and other neurodegenerative disorders. Herein, the molecular and structural mechanisms of inhibiting -synuclein aggregation by novel analogs of nordihydroguaiaretic acid (NDGA), a phenolic dibenzenediol lignan, were explored using an array of biochemical and biophysical methodologies. NDGA analogs induced modest, progressive compaction of monomeric -synuclein, preventing aggregation into amyloid-like fibrils. This conformational remodeling preserved the dynamic adoption of -helical conformations, which are essential for physiological membrane interactions. Oxidation-dependent NDGA cyclization was required for the interaction with monomeric -synuclein. NDGA analog-pretreated -synuclein did not aggregate even without NDGA-analogs in the aggregation mixture. Strikingly, NDGA-pretreated -synuclein suppressed aggregation of naive untreated aggregation-competent monomeric -synuclein. Further, cyclized NDGA reduced -synuclein-driven neurodegeneration in Caenorhabditis elegans. The cyclized NDGA analogs may serve as a platform for the development of small molecules that stabilize aggregation-resistant -synuclein monomers without interfering with functional conformations yielding potential therapies for PD and related disorders.
-
[
Naturwissenschaften,
2004]
Animals respond to signals and cues in their environment. The difference between a signal (e.g. a pheromone) and a cue (e.g. a waste product) is that the information content of a signal is subject to natural selection, whereas that of a cue is not. The model free-living nematode Caenorhabditis elegans forms an alternative developmental morph (the dauer larva) in response to a so-called 'dauer pheromone', produced by all worms. We suggest that the production of 'dauer pheromone' has no fitness advantage for an individual worm and therefore we propose that 'dauer pheromone' is not a signal, but a cue. Thus, it should not be called a pheromone.