-
[
Development,
2018]
John Sulston, a pioneer in the developmental studies of the nematode <i>C. elegans</i> who went on to spearhead the sequencing of the genome of this organism and ultimately the human genome, died on 6th March 2018, shortly after being diagnosed with stomach cancer. Here, I reflect on John's life and work, with a particular focus on his time working on the developmental genetics and lineage of <i>C. elegans</i><i>.</i>
-
[
J Neurogenet
]
A slide taped to a window at the Woods Hole Marine Biology Laboratory was my first introduction to the touch receptor neurons of the nematode <i>Caenorhabditis elegans</i>. Studying these cells as a postdoc with Sydney Brenner gave me a chance to work with John Sulston on a fascinating set of neurons. I would never have guessed then that 43 years later I would still be excited about learning their secrets.
-
[
J Neurogenet
]
John Sulston changed the way we do science, not once, but three times - initially with the complete cell lineage of the nematode <i>Caenorhabditis elegans</i>, next with completion of the genome sequences of the worm and human genomes and finally with his strong and active advocacy for open data sharing. His contributions were widely recognized and in 2002 he received the Nobel Prize in Physiology and Medicine.
-
[
J Neurogenet,
2020]
Sexual dimorphism is a device that supports genetic diversity while providing selective pressure against speciation. This phenomenon is at the core of sexually reproducing organisms. <i>Caenorhabditis elegans</i> provides a unique experimental system where males exist in a primarily hermaphroditic species. Early works of John Sulston, Robert Horvitz, and John White provided a complete map of the hermaphrodite nervous system, and recently the male nervous system was added. This addition completely realized the vision of <i>C. elegans</i> pioneer Sydney Brenner: a model organism with an entirely mapped nervous system. With this 'connectome' of information available, great strides have been made toward understanding concepts such as how a sex-shared nervous system (in hermaphrodites and males) can give rise to sex-specific functions, how neural plasticity plays a role in developing a dimorphic nervous system, and how a shared nervous system receives and processes external cues in a sexually-dimorphic manner to generate sex-specific behaviors. In <i>C. elegans</i>, the intricacies of male-mating behavior have been crucial for studying the function and circuitry of the male-specific nervous system and used as a model for studying human autosomal dominant polycystic kidney disease (ADPKD). With the emergence of CRISPR, a seemingly limitless tool for generating genomic mutations with pinpoint precision, the <i>C. elegans</i> model system will continue to be a useful instrument for pioneering research in the fields of behavior, reproductive biology, and neurogenetics.
-
[
Genes (Basel),
2018]
<i>Caenorhabditis</i><i>elegans</i> is a valuable tool as an infection model toward the study of <i>Candida</i> species. In this work, we endeavored to develop a <i>C</i>. <i>elegans</i>-<i>Candida</i><i>parapsilosis</i> infection model by using the fungi as a food source. Three species of the C. parapsilosis complex (<i>C.</i><i>parapsilosis</i> (<i>sensu</i><i>stricto</i>), <i>Candida</i><i>orthopsilosis</i> and <i>Candida</i><i>metapsilosis</i>) caused infection resulting in <i>C. elegans</i> killing. All three strains that comprised the complex significantly diminished the nematode lifespan, indicating the virulence of the pathogens against the host. The infection process included invasion of the intestine and vulva which resulted in organ protrusion and hyphae formation. Importantly, hyphae formation at the vulva opening was not previously reported in <i>C</i>. <i>elegans</i>-<i>Candida</i> infections. Fungal infected worms in the liquid assay were susceptible to fluconazole and caspofungin and could be found to mount an immune response mediated through increased expression of <i>cnc</i>-<i>4</i>, <i>cnc</i>-<i>7</i>, and <i>fipr</i><i>-</i><i>22</i>/<i>23</i>. Overall, the <i>C</i>. <i>elegans</i>-<i>C</i>. <i>parapsilosis</i> infection model can be used to model <i>C</i>. <i>parapsilosis</i> host-pathogen interactions.
-
[
J Neurogenet,
2020]
This review article highlights our efforts to decode the role of the nervous system in regulating intestinal lipid metabolism in <i>Caenorhabditis elegans</i>. Capitalizing on the prescient and pioneering work of Sydney Brenner and John Sulston in establishing <i>C. elegans</i> as an immensely valuable model system, we have uncovered critical roles for oxygen sensing, population density sensing and food sensing in orchestrating the balance between storing lipids and utilizing them for energy in the intestine, the major organ for lipid metabolism in this model system. Our long-term goal is to reveal the integrative mechanisms and regulatory logic that underlies the complex relationship between genes, environment and internal state in the regulation of energy and whole-body physiology.
-
[
Front Cell Infect Microbiol,
2021]
The yeast <i>Candida albicans</i> exhibits multiple morphologies dependent on environmental cues. <i>Candida albicans</i> biofilms are frequently polymicrobial, enabling interspecies interaction through proximity and contact. The interaction between <i>C. albicans</i> and the bacterium, <i>Pseudomonas aeruginosa</i>, is antagonistic <i>in vitro, with P. aeruginosa</i> repressing the yeast-to-hyphal switch in <i>C. albicans</i>. Previous transcriptional analysis of <i>C. albicans</i> in polymicrobial biofilms with <i>P. aeruginosa</i> revealed upregulation of genes involved in regulation of morphology and biofilm formation, including <i>SET3</i>, a component of the Set3/Hos2 histone deacetylase complex (Set3C). This prompted the question regarding the involvement of <i>SET3</i> in the interaction between <i>C. albicans</i> and <i>P. aeruginosa</i>, both <i>in vitro</i> and <i>in vivo.</i> We found that <i>SET3</i> may influence early biofilm formation by <i>C. albicans</i> and the interaction between <i>C. albicans</i> and <i>P. aeruginosa</i>. In addition, although deletion of <i>SET3</i> did not alter the morphology of <i>C. albicans</i> in the presence of <i>P. aeruginosa</i>, it did cause a reduction in virulence in a <i>Caenorhabditis elegans</i> infection model, even in the presence of <i>P. aeruginosa.</i>
-
[
Oxid Med Cell Longev,
2020]
Naringin is a dihydroflavonoid, which is rich in several plant species used for herbal medicine. It has a wide range of biological activities, including antineoplastic, anti-inflammatory, antiphotoaging, and antioxidative activities. So it would be interesting to know if naringin has an effect on aging and aging-related diseases. We examined the effect of naringin on the aging of <i>Caenorhabditis elegans</i> (<i>C</i>. <i>elegans</i>). Our results showed that naringin could extend the lifespan of <i>C</i>. <i>elegans</i>. Moreover, naringin could also increase the thermal and oxidative stress tolerance, reduce the accumulation of lipofuscin, and delay the progress of aging-related diseases in <i>C</i>. <i>elegans</i> models of AD and PD. Naringin could not significantly extend the lifespan of long-lived mutants from genes in insulin/IGF-1 signaling (IIS) and nutrient-sensing pathways, such as <i>daf</i>-<i>2</i>, <i>akt</i>-<i>2</i>, <i>akt</i>-<i>1</i>, <i>eat</i>-<i>2</i>, <i>sir</i>-<i>2</i>.<i>1</i>, and <i>rsks</i>-<i>1</i>. Naringin treatment prolonged the lifespan of long-lived <i>glp</i>-<i>1</i> mutants, which have decreased reproductive stem cells. Naringin could not extend the lifespan of a null mutant of the fox-head transcription factor DAF-16. Moreover, naringin could increase the mRNA expression of genes regulated by <i>daf</i>-<i>16</i> and itself. In conclusion, we show that a natural product naringin could extend the lifespan of <i>C</i>. <i>elegans</i> and delay the progression of aging-related diseases in <i>C</i>. <i>elegans</i> models via DAF-16.
-
[
Heliyon,
2019]
This study identified the endoparasites in Brown rat (<i>Rattus norvegicus)</i> during May to July 2017 in Grenada, West Indies. A total of 162 rats, 76 females and 86 males were trapped from St. George and St. David parishes in Grenada. The collected fecal samples were examined for parasitic eggs and/or oocysts using simple fecal flotation technique. Adult parasites found in the intestinal tract were examined for identification. The overall prevalence of intestinal parasites among rats was 79 %. Ten helminth species were recovered, several of which were reported for the first time in rodents in Grenada. The internal parasites consist of seven nematodes (<i>Angiostrongylus</i> spp., <i>Nippostrongylus braziliensis</i>, <i>Heterakis spumosa</i>, <i>Strongyloides ratti</i>, <i>Aspiculuris tetraptera</i>, <i>Syphacia</i> spp. and <i>Protospirura</i> spp.), one cestode (<i>Hymenolepsis diminuta</i>), one acanthocephalan (<i>Moniliformis moniliformis</i>) and one protozoa species (<i>Eimeria</i> spp.). The most prevalent zoonotic species were <i>Angiostrongylus</i> spp. (35.2%), <i>Hymenolepsis diminuta</i> (7.4%) and <i>Moniliformis moniliformis</i> (3.1%). Several nonzoonotic endoparasites; which included <i>Nippostrongylus braziliensis</i> (50.6%), <i>Heterakis spumosa</i> (15.4%), <i>Strongyloides ratti</i> (43.2%), <i>Aspiculuris tetraptera</i> (2.5%), <i>Syphacia</i> spp<i>.</i> (1.9%), <i>Protospirura</i> spp. (1.2%) and <i>Eimeria</i> spp. (4.7%) were also identified. The most prevalent parasites were <i>Nippostrongylus brasiliensis</i> (50.6%), <i>Strongyloides ratti</i> (43.2%) and <i>Angiostrongylus spp.</i> (35.2%). Co-infections occurred with up to six species per rat showing different combinations of parasitic infections.
-
Shu CY, Li CW, Ko WC, Su YC, Chen YW, Lee NY, Su SL, Wu CJ, Chen PL, Li MC, Lin YT
[
Appl Environ Microbiol,
2019]
The present study aimed to isolate <i>Aeromonas</i> from fish sold in the markets as well as in sushi and seafood shops and compare their virulence factors and antimicrobial characteristics with those of clinical isolates. Among the 128 fish isolates and 47 clinical isolates, <i>A. caviae</i>, <i>A. dhakensis</i>, and <i>A. veronii</i> were the principal species. <i>A. dhakensis</i> isolates carried at least 5 virulence genes, more than other <i>Aeromonas</i> species. The predominant genotype of virulence genes was <i>hlyA/lip/alt/col/el</i> in both <i>A. dhakensis</i> and <i>A. hydrophila</i> isolates, <i>alt/col/ela</i> in <i>A. caviae</i> isolates, and <i>act</i> in <i>A. veronii</i> isolates. <i>A. dhakensis</i>, <i>A. hydrophila</i>, and <i>A. veronii</i> isolates more often exhibited hemolytic and proteolytic activity and showed greater virulence than <i>A. caviae</i> in <i>Caenorhabditis elegans</i> and the C2C12 cell line. However, the link between the genotypes and phenotypes of the studied virulence genes in <i>Aeromonas</i> species is not evident. Among the four major clinical <i>Aeromonas</i> species, nearly all (99.0%) <i>A. dhakensis</i>, <i>A. hydrophila</i>, and <i>A. veronii</i> isolates harbored <i>bla</i><sub>CphA</sub>, which encodes a carbapenemase, but only a minority (6.7%, 7/104) were nonsusceptible to carbapenem. Regarding AmpC -lactamase genes, <i>bla</i><sub>AQU-1</sub> was exclusively found in <i>A. dhakensis</i> isolates and <i>bla</i><sub>MOX3</sub> only in <i>A. caviae</i> isolates, but only 7.6% (6) of the 79 <i>Aeromonas</i> isolates carrying <i>bla</i><sub>AQU-1</sub> or <i>bla</i><sub>MOX3</sub> exhibited a cefotaxime resistance phenotype. In conclusion, fish <i>Aeromonas</i> isolates carry a variety of combinations of virulence and B-lactamase resistance genes and exhibit virulence phenotypes and antimicrobial resistance profiles similar to those of clinical isolates.<b>IMPORTANCE</b><i>Aeromonas</i> species can cause severe infections in immunocompromised individuals upon exposure to virulent pathogens in the environment, but the characteristics of environmental <i>Aeromonas</i> species remain unclear. Our study showed several pathogenic <i>Aeromonas</i> species possessing virulence traits and antimicrobial resistance similar to those of <i>Aeromonas</i> isolates causing clinical diseases were present in fish intended for human consumption in Tainan City.