-
[
Mol Biochem Parasitol,
2005]
The filarial parasite Brugia malayi survives for many years in the human lymphatic system. One immune evasion mechanism employed by Brugia is thought to be the release of cysteine protease inhibitors (cystatins), and we have previously shown that the recombinant cystatin Bm-CPI-2 interferes with protease-dependent antigen processing in the MHC class II antigen presentation pathway. Analogy with vertebrate cystatins suggested that Bm-CPI-2 is bi-functional, with one face of the protein blocking papain-like proteases, and the other able to inhibit legumains such as asparaginyl endopeptidase (AEP). Site-directed mutagenesis was carried out on Bm-CPI-2 at Asn-77, the residue on which AEP inhibition is dependent in vertebrate homologues. Two mutations at this site (to Asp and Lys) showed 10-fold diminished and ablated activity respectively, in assays of AEP inhibition, while blocking of papain-like proteases was reduced by only a small degree. Comparison of the B. malayi cystatins with two homologues encoded by the free-living model organism, Caenorhabditis elegans, suggested that while the papain site may be intact, the AEP site would not be functional. This supposition was tested with recombinant C. elegans proteins, Ce-CPI-1 (K08B4.6) and Ce-CPI-2 (R01B10.1), both of which block cathepsins and neither of which possess the ability to block AEP. Thus, Brugia CPI-2 may have convergently evolved to inhibit an enzyme important only in the mammalian environment.
-
[
J Exp Biol,
2011]
Sperm count evolution is driven by sexual selection, with an added role of selection on gamete resource allocation for hermaphrodite spermatogenesis. However, self-fertilization by hermaphrodites retards sexual selection and results in the evolution of reduced investment in sperm or pollen. In contrast to reproduction limited by female gametes (Bateman's Principle), self-fertilizing Caenorhabditis elegans hermaphrodites exhibit sperm-limited reproduction. Caenorhabditis elegans hermaphrodites are thought to experience a fitness trade-off between lifetime fecundity and generation time: longer sperm production decreases the risk of self-sperm depletion, but at the same time delays the onset of selfing and thus increases egg-to-egg generation time. Theory predicts that shorter larval development will favor lower sperm counts and longer development will favor more sperm. To investigate how developmental trajectories affect the evolution of sperm production, we performed experimental evolution by directly competing alleles controlling hermaphrodite sperm count, conducted under different environmental conditions that alter development time. Results are partially consistent with theory: rapid larval development generally favored alleles encoding production of few sperm. However, we identify some previously unrecognized simplifications of the theory and its application to our experimental system. In addition, we evaluated the generality of sperm limitation in C. elegans. Although optimal growth conditions yield sperm limitation, non-optimal conditions induce oocyte limitation, suggesting that this species might conform to Bateman's Principle under many natural settings. These findings demonstrate how developmental trajectories can shape the fitness landscape for the evolution of reproduction and sperm traits, even without sexual selection.
-
[
Int J Parasitol,
2007]
Many proteolytic enzymes of parasitic nematodes have been identified as possible targets of control. Testing these as vaccine or drug targets is often difficult due to the problems of expressing proteases in a correctly folded, active form in standard expression systems. In an effort to overcome these difficulties we have tested Caenorhabditis elegans as an expression system for a Haemonchus contortus cathepsin L cysteine protease, Hc-CPL-1. Recombinant Hc-CPL-1 with a polyhistidine tag added to the C-terminal was expressed in an active and glycosylated form in C. elegans. Optimal expression was obtained expressing
Hc-cpl-1 under control of the promoter of the homologous C. elegans
cpl-1 gene. The recombinant protein was purified from liquid cultures by nickel chelation chromatography in sufficient amounts for vaccination studies to be carried out. This study provides proof of principle that active, post-translationally modified parasitic nematode proteases can be expressed in C. elegans and this approach can be extended for expression of known protective antigens.
-
[
Biochemistry,
1987]
The major intestinal esterase from the nematode Caenorhabditis elegans has been purified to essential homogeneity. Starting from whole worms, the overall purification is 9000-fold with a 10% recovery of activity. The esterase is a single polypeptide chain of Mr 60,000 and is stoichiometrically inhibited by organophosphates. Substrate preferences and inhibition patterns classify the enzyme as a carboxylesterase (EC 3.1.1.1), but the physiological function is unknown. The sequence of 13 amino acid residues at the esterase N- terminus has been determined. This partial sequence shows a surprisingly high degree of similarity to the N-terminal sequence of two carboxylesterases recently isolated from Drosophila mojavensis [Pen, J., van Beeumen, J., & Beintema, J. J. (1986) Biochem. J. 238, 691-699].
-
Berynskyy M, Morimoto RI, Bukau B, Stengel F, Kirstein J, Szlachcic A, Arnsburg K, Stank A, Scior A, Nillegoda NB, Gao X, Guilbride DL, Aebersold R, Wade RC, Mayer MP
[
Nature,
2015]
Protein aggregates are the hallmark of stressed and ageing cells, and characterize several pathophysiological states. Healthy metazoan cells effectively eliminate intracellular protein aggregates, indicating that efficient disaggregation and/or degradation mechanisms exist. However, metazoans lack the key heat-shock protein disaggregase HSP100 of non-metazoan HSP70-dependent protein disaggregation systems, and the human HSP70 system alone, even with the crucial HSP110 nucleotide exchange factor, has poor disaggregation activity in vitro. This unresolved conundrum is central to protein quality control biology. Here we show that synergic cooperation between complexed J-protein co-chaperones of classes A and B unleashes highly efficient protein disaggregation activity in human and nematode HSP70 systems. Metazoan mixed-class J-protein complexes are transient, involve complementary charged regions conserved in the J-domains and carboxy-terminal domains of each J-protein class, and are flexible with respect to subunit composition. Complex formation allows J-proteins to initiate transient higher order chaperone structures involving HSP70 and interacting nucleotide exchange factors. A network of cooperative class A and B J-protein interactions therefore provides the metazoan HSP70 machinery with powerful, flexible, and finely regulatable disaggregase activity and a further level of regulation crucial for cellular protein quality control.
-
[
Genome Biol,
2002]
BACKGROUND: Multiple A- and B-type cyclins have been identified in animals, but their study is complicated by varying degrees of functional redundancy. A non-essential phenotype may reflect redundancy with a known or as yet unknown gene. Complete sequencing of several animal genomes has allowed us to determine the size of the mitotic cyclin gene family and therefore to start to address this issue. RESULTS: We analyzed the Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens genomes to identify known and novel A- and B-type cyclin genes and distinguish them from related pseudogenes. We find only a single functional A-type cyclin gene in invertebrates but two in vertebrates. In addition to the single functional cyclin A gene, the C. elegans genome contains numerous cyclin A pseudogenes. In contrast, the number and relationship of B-type cyclins varies considerably between organisms but all contain at least one cyclin B1-like gene and a cyclin B3 gene. CONCLUSIONS: There are three conserved families of mitotic cyclins in animals: A-, B3- and B-type. The precise number of genes within the A- and B-type families varies in different organisms, possibly as an adaptation to their distinct developmental strategies.
-
[
Mol Immunol,
1999]
Invertebrate cells lack the
p53 recombination checkpoint but contain mobile DNA sequences that transpose by a mechanism in part shared with excision of the V(D)J recombination signal sequences (RSS). In this work, inversion, deletion, and duplication of sequences associated with an invertebrate C. elegans Tc6 element is described. The structure of this C. elegans sequence and other dispersed Tc6 elements suggests that covalently closed 'hairpin' structures are not unique to excision of the V(D)J RSS by the RAG proteins, but rather can be generated by transposases at transposon termini leading to characteristic inversion and duplication events. Comparative analysis of recombination events at invertebrate sequences resembling the vertebrate V(D)J RSS may be useful in understanding V(D)J recombination-mediated recombination events in malignant vertebrate cells or genetic diseases such as ataxia telangectasia, in which the
p53 recombination checkpoint is defective.
-
[
Phytother Res,
2008]
A bioassay-guided fractionation of Juniperus procera berries yielded antiparasitic, nematicidal and antifouling constituents, including a wide range of known abietane, pimarane and labdane diterpenes. Among these, abieta-7,13-diene (1) demonstrated in vitro antimalarial activity against Plasmodium falciparum D6 and W2 strains (IC(50) = 1.9 and 2.0 microg/mL, respectively), while totarol (6), ferruginol (7) and 7beta-hydroxyabieta-8,13-diene-11,12-dione (8) inhibited Leishmania donovani promastigotes with IC(50) values of 3.5-4.6 microg/mL. In addition, totarol demonstrated nematicidal and antifouling activities against Caenorhabditis elegans and Artemia salina at a concentration of 80 microg/mL and 1 microg/mL, respectively. The resinous exudate of J. virginiana afforded known antibacterial E-communic acid (4) and 4-epi-abietic acid (5), while the volatile oil from its trunk wood revealed large quantities of cedrol (9). Using GC/MS, the two known abietanes totarol (6) and ferruginol (7) were identified from the berries of J. procera, J. excelsa and J. phoenicea.
-
[
Aging Cell,
2017]
Protein aggregation is enhanced upon exposure to various stress conditions and aging, which suggests that the quality control machinery regulating protein homeostasis could exhibit varied capacities in different stages of organismal lifespan. Recently, an efficient metazoan disaggregase activity was identified invitro, which requires the Hsp70 chaperone and Hsp110 nucleotide exchange factor, together with single or cooperating J-protein co-chaperones of classes A and B. Here, we describe how the orthologous Hsp70s and J-protein of Caenorhabditis elegans work together to resolve protein aggregates both invivo and invitro to benefit organismal health. Using an RNAi knockdown approach, we show that class A and B J-proteins cooperate to form an interactive flexible network that relocalizes to protein aggregates upon heat shock and preferentially recruits constitutive Hsc70 to disaggregate heat-induced protein aggregates and polyQ aggregates that form in an age-dependent manner. Cooperation between class A and B J-proteins is also required for organismal health and promotes thermotolerance, maintenance of fecundity, and extended viability after heat stress. This disaggregase function of J-proteins and Hsc70 therefore constitutes a powerful regulatory network that is key to Hsc70-based protein quality control mechanisms in metazoa with a central role in the clearance of aggregates, stress recovery, and organismal fitness in aging.
-
[
Nat Genet,
2002]
Mice that are homozygous with respect to a mutation (ax(J)) in the ataxia (ax) gene develop severe tremors by 2-3 weeks of age followed by hindlimb paralysis and death by 6-10 weeks of age. Here we show that ax encodes ubiquitin-specific protease 14 (Usp14). Ubiquitin proteases are a large family of cysteine proteases that specifically cleave ubiquitin conjugates. Although Usp14 can cleave a ubiquitin-tagged protein in vitro, it is unable to process polyubiquitin, which is believed to be associated with the protein aggregates seen in Parkinson disease, spinocerebellar ataxia type 1 (SCA1; ref. 4) and gracile axonal dystrophy (GAD). The physiological substrate of Usp14 may therefore contain a mono-ubiquitin side chain, the removal of which would regulate processes such as protein localization and protein activity. Expression of Usp14 is significantly altered in ax(J)/ax(J) mice as a result of the insertion of an intracisternal-A particle (IAP) into intron 5 of Usp14. In contrast to other neurodegenerative disorders such as Parkinson disease and SCA1 in humans and GAD in mice, neither ubiquitin-positive protein aggregates nor neuronal cell loss is detectable in the central nervous system (CNS) of ax(J) mice. Instead, ax(J) mice have defects in synaptic transmission in both the central and peripheral nervous systems. These results suggest that ubiquitin proteases are important in regulating synaptic activity in mammals.