-
[
EMBO Rep,
2017]
Two structurally distinct filamentous tracks, namely singlet microtubules in the cytoplasm and axonemes in the cilium, serve as railroads for long-range transport processes <i>invivo</i> In all organisms studied so far, the kinesin-2 family is essential for long-range transport on axonemes. Intriguingly, in higher eukaryotes, kinesin-2 has been adapted to work on microtubules in the cytoplasm as well. Here, we show that heterodimeric kinesin-2 motors distinguish between axonemes and microtubules. Unlike canonical kinesin-1, kinesin-2 takes directional, off-axis steps on microtubules, but it resumes a straight path when walking on the axonemes. The inherent ability of kinesin-2 to side-track on the microtubule lattice restricts the motor to one side of the doublet microtubule in axonemes. The mechanistic features revealed here provide a molecular explanation for the previously observed partitioning of oppositely moving intraflagellar transport trains to the A- and B-tubules of the same doublet microtubule. Our results offer first mechanistic insights into why nature may have co-evolved the heterodimeric kinesin-2 with the ciliary machinery to work on the specialized axonemal surface for two-way traffic.
-
[
Proc Natl Acad Sci U S A,
2022]
Specific recognition of cellular cargo and efficient transport to its correct intracellular destination is an infrastructural challenge faced by most eukaryotic cells. This remarkable deed is accomplished by processive motor proteins that are subject to robust regulatory mechanisms. The first level of regulation entails the ability of the motor to suppress its own activity. This autoinhibition is eventually relieved by specific cargo binding. To better understand the role of the cargo during motor activation, we dissected the activation mechanism of the ciliary homodimeric kinesin-2 from Caenorhabditis elegans by its physiological cargo. In functional reconstitution assays, we identified two cargo adaptor proteins that together are necessary and sufficient to allosterically activate the autoinhibited motor. Surprisingly, the orthologous adaptor proteins from the unicellular green algae Chlamydomonas reinhardtii also fully activated the kinesin-2 from worm, even though C. reinhardtii itself lacks a homodimeric kinesin-2 motor. The latter suggested that a motor activation mechanism similar to the C. elegans model existed already well before metazoans evolved, and prompted us to scrutinize predicted homodimeric kinesin-2 orthologs in other evolutionarily distant eukaryotes. We show that the ciliate Tetrahymena thermophila not only possesses a homodimeric kinesin-2 but that it also shares the same allosteric activation mechanism that we delineated in the C. elegans model. Our results point to a much more fundamental role of homodimeric kinesin-2 in intraflagellar transport (IFT) than previously thought and warrant further scrutiny of distantly related organisms toward a comprehensive picture of the IFT process and its evolution.
-
[
Cell Calcium,
2023]
Mueller et al. [1] uncover distinct roles for CaV1 and CaV2 channels in neurotransmitter release at the C. elegans neuromuscular junction. Although nanodomain coupling occurs via clustered CaV2 channels, evidence is also presented that release of a separate vesicular pool is mediated by more peripheral, dispersed CaV1 channels, requiring obligatory coupling with RYR to amplify the Ca2+ signal.
-
[
Genome Biol,
2000]
SUMMARY: The F-box is a protein motif of approximately 50 amino acids that functions as a site of protein-protein interaction. F-box proteins were first characterized as components of SCF ubiquitin-ligase complexes (named after their main components, Skp I, Cullin, and an F-box protein), in which they bind substrates for ubiquitin-mediated proteolysis. The F-box motif links the F-box protein to other components of the SCF complex by binding the core SCF component Skp I. F-box proteins have more recently been discovered to function in non-SCF protein complexes in a variety of cellular functions. There are 11 F-box proteins in budding yeast, 326 predicted in Caenorhabditis elegans, 22 in Drosophila, and at least 38 in humans. F-box proteins often include additional carboxy-terminal motifs capable of protein-protein interaction; the most common secondary motifs in yeast and human F-box proteins are WD repeats and leucine-rich repeats, both of which have been found to bind phosphorylated substrates to the SCF complex. The majority of F-box proteins have other associated motifs, and the functions of most of these proteins have not yet been defined.
-
[
Worm Breeder's Gazette,
1995]
lin-49, an essential gene required for normal F and U cells
-
[
Parasitol Today,
1988]
Ivermectin is a semi-synthetic macrocyclic lactone (Fig. I) active in single low doses against many parasites - particularly nematodes and arthropods. It has been registered for animal health use since early 1985, and was earlier this year approved for human use by the French Directorate o f Pharmacy and Drugs. Of particular interest is ivermectin's potential as a micro filaricide for treatment o f onchocerciasis. Clinical trials leave little doubt about the potential o f ivermectin as a therapeutic tool for symptomatic relief from the effects o f infection with Onchocerca volvulus, and the drug is also recognized to have potential in reducing transmission o f the parasite. The manufacturers (Merck, Sharp and Dohme) recently arranged to provide the drug free o f charge to the WHO for mass trials against onchocerciasis in 12 African and Central American countries. In this article we focus on the pharmacological properties o f ivermectin, with a brief consideration of its absorption, fate, excretion and side-effects, and a discussion o f its micro filaricidal action.
-
[
Proc Natl Acad Sci U S A,
2010]
Cilia are microtubule-based protrusions of the plasma membrane found on most eukaryotic cells. Their assembly is mediated through the conserved intraflagellar transport mechanism. One class of motor proteins involved in intraflagellar transport, kinesin-2, is unique among kinesin motors in that some of its members are composed of two distinct polypeptides. However, the biological reason for heterodimerization has remained elusive. Here we provide several interdependent reasons for the heterodimerization of the kinesin-2 motor KLP11/KLP20 of Caenorhabditis elegans cilia. One motor domain is unprocessive as a homodimer, but heterodimerization with a processive partner generates processivity. The "unprocessive" subunit is kept in this partnership as it mediates an asymmetric autoregulation of the motor activity. Finally, heterodimerization is necessary to bind KAP1, the in vivo link between motor and cargo.
-
[
Cell,
2013]
The UCS (UNC-45/CRO1/She4) chaperones play an evolutionarily conserved role in promoting myosin-dependent processes, including cytokinesis, endocytosis, RNA transport, and muscle development. To investigate the protein machinery orchestrating myosin folding and assembly, we performed a comprehensive analysis of Caenorhabditis elegans UNC-45. Our structural and biochemical data demonstrate that UNC-45 forms linear protein chains that offer multiple binding sites for cooperating chaperones and client proteins. Accordingly, Hsp70 and Hsp90, which bind to the TPR domain of UNC-45, could act in concert and with defined periodicity on captured myosin molecules. In vivo analyses reveal the elongated canyon of the UCS domain as a myosin-binding site and show that multimeric UNC-45 chains support organization of sarcomeric repeats. In fact, expression of transgenes blocking UNC-45 chain formation induces dominant-negative defects in the sarcomere structure and function of wild-type worms. Together, these findings uncover a filament assembly factor that directly couples myosin folding with myofilament formation.
-
[
Curr Biol,
2015]
Establishment of a neuronal system requires proper regulation of the F-actin-rich leading edges of migrating neurons and neurite growth cones. A new study shows that RhoG signals through the multi-domain protein anillin to stabilize F-actin in these structures.
-
[
Proc Natl Acad Sci U S A,
2010]
The ternary complex of cadherin, beta-catenin, and alpha-catenin regulates actin-dependent cell-cell adhesion. alpha-Catenin can bind beta-catenin and F-actin, but in mammals alpha-catenin either binds beta-catenin as a monomer or F-actin as a homodimer. It is not known if this conformational regulation of alpha-catenin is evolutionarily conserved. The Caenorhabditis elegans alpha-catenin homolog HMP-1 is essential for actin-dependent epidermal enclosure and embryo elongation. Here we show that HMP-1 is a monomer with a functional C-terminal F-actin binding domain. However, neither full-length HMP-1 nor a ternary complex of HMP-1-HMP-2(beta-catenin)-HMR-1(cadherin) bind F-actin in vitro, suggesting that HMP-1 is auto-inhibited. Truncation of either the F-actin or HMP-2 binding domain of HMP-1 disrupts C. elegans development, indicating that HMP-1 must be able to bind F-actin and HMP-2 to function in vivo. Our study defines evolutionarily conserved properties of alpha-catenin and suggests that multiple mechanisms regulate alpha-catenin binding to F-actin.