-
[
WormBook,
2007]
Heterorhabditis bacteriophora is an entomopathogenic nematode (EPN) mutually associated with the enteric bacterium, Photorhabdus luminescens, used globally for the biological control of insects. Much of the previous research concerning H. bacteriophora has dealt with applied aspects related to biological control. However, H. bacteriophora is an excellent model to investigate fundamental processes such as parasitism and mutualism in addition to its comparative value to Caenorhabditis elegans. In June 2005, H. bacteriophora was targeted by NHGRI for a high quality genome sequence. This chapter summarizes the biology of H. bacteriophora in common and distinct from C. elegans, as well as the status of the genome project.
-
[
WormBook,
2005]
A genetic enhancer is a mutation in one gene that intensifies the phenotype caused by a mutation in another gene. The phenotype of the double mutant is much stronger than the summation of the single mutant phenotypes. The isolation of enhancers can lead to the identification of interacting genes, including genes that act redundantly with respect to each other. Examples in Caenorhabditis elegans of dominant enhancers are presented first, followed by a review of recessive enhancers of null mutations. In some of these cases, the interacting genes are related in structure and function, but in other cases, the interacting genes are nonhomologous. Recessive enhancers of non-null mutations can also be useful. A powerful advance for the identification of recessive enhancers is genome-wide screening based on RNA interference.
-
[
WormBook,
2006]
Receptor Tyrosine Kinase (RTK)/Ras GTPase/MAP kinase (MAPK) signaling pathways are used repeatedly during metazoan development to control many different biological processes. In the nematode Caenorhabditis elegans , two different RTKs ( LET-23 /EGFR and EGL-15 /FGFR) are known to stimulate LET-60 /Ras and a MAPK cascade consisting of the kinases LIN-45 /Raf, MEK-2 /MEK and MPK-1 /ERK. This Ras/MAPK cascade is required for multiple developmental events, including induction of vulval, uterine, spicule, P12 and excretory duct cell fates, control of sex myoblast migration and axon guidance, and promotion of germline meiosis. Studies in C. elegans have provided much insight into the basic framework of this RTK/Ras/MAPK signaling pathway, its regulation, how it elicits cell-type specific responses, and how it interacts with other signaling pathways such as the Wnt and Notch pathways.
-
[
WormBook,
2007]
Great inroads into the understanding of aging have been made using C. elegans as a model system. Several genes have been identified that, when mutated, can extend lifespan. Yet, much about aging remains a mystery, and new technologies that allow the simultaneous assay of expression levels of thousands of genes have been applied to the question of how and why aging might occur. With correct experimental design and statistical analysis, differential gene expression between two or more populations can be obtained with high confidence. The ability to survey the entire genome in an unbiased way is a great asset for the study of complex biological phenomena such as aging. Aging undoubtedly involves changes in multiple genes involved in multiple processes, some of which may not yet be known. Gene expression profiling of wild type aging, and of strains with increased life spans, has provided some insight into potential mechanisms, and more can be expected in the future.
-
[
WormBook,
2006]
Throughout the C. elegans sequencing project Genefinder was the primary protein-coding gene prediction program. These initial predictions were manually reviewed by curators as part of a "first-pass annotation" and are actively curated by WormBase staff using a variety of data and information. In the WormBase data release WS133 there are 22,227 protein-coding gene, including 2,575 alternatively-spliced forms. Twenty-eight percent of these have every base of every exon confirmed by transcription evidence while an additional 51% have some bases confirmed. Most of the genes are relatively small covering a genomic region of about 3 kb. The average gene contains 6.4 coding exons accounting for about 26% of the genome. Most exons are small and separated by small introns. The median size of exons is 123 bases, while the most common size for introns is 47 bases. Protein-coding genes are denser on the autosomes than on chromosome X, and denser in the central region of the autosomes than on the arms. There are only 561 annotated pseudogenes but estimates but several estimates put this much higher.
-
[
WormBook,
2005]
Ion channels are the "transistors" (electronic switches) of the brain that generate and propagate electrical signals in the aqueous environment of the brain and nervous system. Potassium channels are particularly important because, not only do they shape dynamic electrical signaling, they also set the resting potentials of almost all animal cells. Without them, animal life as we know it would not exist, much less higher brain function. Until the completion of the C. elegans genome sequencing project the size and diversity of the potassium channel extended gene family was not fully appreciated. Sequence data eventually revealed a total of approximately 70 genes encoding potassium channels out of the more than 19,000 genes in the genome. This seemed to be an unexpectedly high number of genes encoding potassium channels for an animal with a small nervous system of only 302 neurons. However, it became clear that potassium channels are expressed in all cell types, not only neurons, and that many cells express a complex palette of multiple potassium channels. All types of potassium channels found in C. elegans are conserved in mammals. Clearly, C. elegans is "simple" only in having a limited number of cells dedicated to each organ system; it is certainly not simple with respect to its biochemistry and cell physiology.
-
[
WormBook,
2005]
Basement membranes are thin, specialized extracellular matrices surrounding most tissues in all metazoans. The compositions and functions of basement membranes have generally been well conserved throughout the subkingdom. Genetic analyses of basement membrane components in C. elegans have provided insights into their assembly and functions during development. Immuno- or GFP-tagged localization studies have shown that basement membranes on different tissues, or even sub-regions of tissues, contain different sets of proteins or alternatively spliced isoforms of them. Several components, including laminin, perlecan, type IV collagen and possibly osteonectin/SPARC, are essential for completion of embryogenesis, being necessary for tissue organization and structural integrity. In contrast, type XVIII collagen and nidogen are not required for viability but primarily influence organization of the nervous system. All of these proteins, with the exception of nidogen and the addition of fibulin, have roles of varying degree in morphogenesis of the gonad. A major family of cellular receptors for basement membrane proteins, the integrins, have also been characterized in C. elegans. As one might expect, integrins have been shown to function in many of the same processes as their potential ligands, the basement membrane components. While much remains to be explored, studies of basement membranes in C. elegans have been highly informative and hold great promise for improving our understanding of how these structures are assembled and how they function in development.