[
Development,
2024]
Asymmetric cell divisions can produce daughter cells of different sizes, but it is unclear whether unequal cell cleavage is important for cell fate decisions. A new paper in Development explores the role of unequal cleavages in Caenorhabditis elegans embryos. To learn more about the story behind the paper, we caught up with first author Thomas Mullan and corresponding author Richard Poole, Associate Professor of Developmental Biology at University College London, UK.
[
Brief Bioinform,
2000]
Acedb is one of the more venerable pieces of Genomics software. Acedb was originally created in 1992 by Richard Durbin and Jean Thierry-Mieg to manage the data from the Caenorhabditis elegans mapping project and subsequently the C. elegans sequencing project. From beginnings as a C. elegans-specific tool, it has been continuously developed into a flexible suite of data management, display and scripting tools providing facilities for managing and annotation mapping information and DNA and peptide sequences.This paper gives a basic overview of the Acedb suite, and step-by-step guidance on how to download and install Acedb. It is intended to take an Acedb novice to stage where they can begin to experiment and explore the facilities that are available.
[
Bioessays,
2008]
Homology is the similarity between organisms due to common ancestry. Introduced by Richard Owen in 1843 in a paper entitled "Lectures on comparative anatomy and physiology of the invertebrate animals", the concept of homology predates Darwin's "Origin of Species" and has been very influential throughout the history of evolutionary biology. Although homology is the central concept of all comparative biology and provides a logical basis for it, the definition of the term and the criteria of its application remain controversial. Here, I will discuss homology in the context of the hierarchy of biological organization. I will provide insights gained from an exemplary case study in evolutionary developmental biology that indicates the uncoupling of homology at different levels of biological organization. I argue that continuity and hierarchy are separate but equally important issues of homology.
[
Prog Mol Subcell Biol,
2021]
The unfolded protein response (UPR) is an evolutionarily conserved adaptive regulatory pathway that alleviates protein-folding defects in the endoplasmic reticulum (ER). Physiological demands, environmental perturbations and pathological conditions can cause accumulation of unfolded proteins in the ER and the stress signal is transmitted to the nucleus to turn on a series of genes to respond the challenge. In metazoan, the UPR pathways consisted of IRE1/XBP1, PEK-1 and ATF6, which function in parallel and downstream transcriptional activation triggers the proteostasis networks consisting of molecular chaperones, protein degradation machinery and other stress response pathways ((Labbadia J, Morimoto RI, F1000Prime Rep 6:7, 2014); (Shen X, Ellis RE, Lee K, Annu Rev Biochem 28:893-903, 2014)). The integrated responses act on to resolve the ER stress by increasing protein folding capacity, attenuating ER-loading translation, activating ER-associated proteasomal degradation (ERAD), and regulating IRE1-dependent decay of mRNA (RIDD). Therefore, the effective UPR to internal and external causes is linked to the multiple pathophysiological conditions such as aging, immunity, and neurodegenerative diseases. Recent development in the research of the UPR includes cell-nonautonomous features of the UPR, interplay between the UPR and other stress response pathways, unconventional UPR inducers, and noncanonical UPR independent of the three major branches, originated from multiple cellular and molecular machineries in addition to ER. Caenorhabditis elegans model system has critically contributed to these unprecedented aspects of the ER UPR and broadens the possible therapeutic targets to treat the ER-stress associated human disorders and time-dependent physiological deterioration of aging.