[
Mol Reprod Dev,
2014]
Spindle positioning is an imperative cellular process that regulates a number of different developmental events throughout embryogenesis. The spindle must be properly positioned in embryos not only for the segregation of chromosomes, but also to segregate developmental determinants into different daughter blastomeres. In this review, the role of spindle positioning is explored in several different developmental model systems, which have revealed the diversity of factors that regulate spindle positioning. The C. elegans embryo, the Drosophila neuroblast, and ascidian embryos have all been utilized for the study of polarity-dependent spindle positioning, and exploration of the proteins that are required for asymmetric cell division. Work in the sea urchin embryo has examined the influence of cell shape and factors that affect secondary furrow formation. The issue of size scaling in extremely large cells, as well as the requirement for spindle positioning in developmental fate decisions in vertebrates, has been addressed by work in the Xenopus embryo. Further work in mouse oocytes has examined the roles of actin and myosin in spindle positioning. The data generated from these model organisms have made unique contributions to our knowledge of spindle positioning. Future work will address how all of these different factors work together to regulate the position of the spindle.
[
Int J Biochem Cell Biol,
2003]
Kallmann's syndrome (KS) is a genetic condition characterised by hypogonadotrophic hypogonadism (HH) and anosmia; although these are the defining features of the condition, additional neurological and non-neurological sequel may also occur depending on the specific mode of inheritance. KS affects about 1 in 8000 males and 1 in 40,000 females, with most presentations being of the 'sporadic' type. Of the inherited forms, hitherto, only the gene responsible for the X-linked form (X-KS), namely KAL-1, has been identified and the encoded protein, anosmin-1, consists primarily of a whey acidic protein (WAP) and fibronectin-like type III (FnIII) domains which appear to mediate distinctly different protein functions. The WAP/FnIII combination is conserved in anosmins across species and recent studies in rodents and in Caenorhabditis elegans demonstrate that anosmin functions in both axonal targeting and branching. Screening for loci that modify these phenotypes in C. elegans has identified heparan-6-O-sulpbotransferase as a key interactor mediating anosmin-1 function. Furthermore, over-expression and loss of function of the C elegans Kal-1 gene disrupt epidermal morphogenesis, resulting in ventral enclosure and male tail formation defects. These findings provide novel insights into the molecular pathogenesis of X-KS.
[
Neuron,
2002]
Three new studies into the function of human anosmin-1 and related proteins in C. elegans and rodents show that these influence axon branching and axon targeting. The rodent anosmin appears to work at two stages of development, initially promoting axon outgrowth from the olfactory bulb and then stimulating branching from axons into the olfactory cortex. CeKal-1 further influences morphogenesis, and, as the human and nematode anosmins are functionally conserved, these studies provide insights into the pathogenesis of Kallmann syndrome (KS).