[
WormBook,
2006]
Sarcomeres within body wall muscle in C. elegans include attachments to the sarcolemma that are remarkably similar in structure to vertebrate adhesion complexes. Crucial early steps in muscle sarcomere assembly, a highly orchestrated affair involving many proteins, involve the assembly of these sarcomere attachments. The steps involved in initiating the correct placement of these attachments and other sarcomere substructures are poorly understood. Using mutants in C. elegans we are attempting to dissect the various steps in this process. We review what has been discovered to date and present a model of sarcomere assembly that initiates at the plasma membrane and involves proteins within muscle, the hypodermis and within the extracellular matrix.
[
Brief Funct Genomic Proteomic,
2008]
The combined efforts of the Caenorhabditis elegans Knockout Consortium and individuals within the worm community are moving us closer to the goal of identifying mutations in every gene in the nematode C. elegans. At present, we count about 7000 deletion alleles that fall within 5500 genes. The principal method used to detect deletion mutations in the nematode utilizes polymerase chain reaction (PCR). More recently, the Moerman group has incorporated array comparative genome hybridization (aCGH) to detect deletions across the entire coding genome. Other methods used to detect mutant alleles in C. elegans include targeting induced local lesion in genomes (TILLING), transposon tagging, using either Tc1 or Mos1 and resequencing. These combined strategies have improved the overall throughput of the gene-knockout labs, and have broadened the types of mutations that we, and others, can identify. In this review, we will discuss these different approaches.