-
[
WormBook,
2007]
Because of their free-living life cycle alternatives, Strongyloides and related nematode parasites may represent the best models for translating C. elegans science to the study of nematode parasitism. S. stercoralis, a significant pathogen of humans, can be maintained in laboratory dogs and gerbils. Biosafety precautions necessary for work with S. stercoralis, though unfamiliar to many C. elegans researchers, are straightforward and easily accomplished. Although specialized methods are necessary for large-scale culture of the free-living stages of S. stercoralis, small-scale cultures for experimental purposes may be undertaken using minor modifications of standard C. elegans methods. Similarly, the morphological similarities between C. elegans and the free-living stages of S. stercoralis allow investigational methods such as laser cell ablation and DNA transformation by gonadal microinjection to be easily adapted from C. elegans to S. stercoralis. Comparative studies employing these methods have yielded new insights into the neuronal control of the infective process in parasites and its similarity to regulation of dauer development in C. elegans. Furthermore, we have developed a practical method for transient transformation of S. stercoralis with vector constructs having various tissue- and cell-specific expression patterns and have assembled these into a modular vector kit for distribution to the community.
-
[
1981]
A neuron can be characterized by its morphology, transmitter (s?), receptor(s) and the nature of its synaptic contacts (chemical or electrical; excitatory or inhibitory; number and distribution of synapses; identity of the cells to which it is presynaptic or postsynaptic). It is clear that according to such criteria nervous sytems consist of neurons of many distinct types. The origin of neuronal diversity is unknown. Both how such diversity is generated during development and how the relevant developmental programme is encoded in the genome remain to
-
[
1998]
The use of antibodies to visualize the distribution and subcellular localization of gene products powerfully complements genetic and molecular analysis of gene function in C. elegans. The challenge to immunolabeling C. elegans is finding the fixation and permeabilization methods that effectively make antigens accessible without destroying the tissue morphology or the antigen. Embryos are surrounded by a chitinous eggshell and larvae and adults are surrounded by a collagenous cuticle, each of which must be permeabilized to allow penetration of antibodies. In addition, antigens and antibodies are sensitive to different fixing and permeabilizing conditions. For example, some antibodies do not work well on paraformaldehydefixed samples, and others are sensitive to incubation in acetone. There are many protocols used in the C. elegans field; additional protocols are summarized in Miller and Shakes (1994) and on the C. elegans World Wide Web page
(http://elegans.swmed.edu/). -
[
1998]
The use of antibodies to visualize the distribution and subcellular localization of gene products powerfully complements genetic and molecular analysis of gene function in C. elegans. The challenge to immunolabeling C. elegans is finding the fixation and permeabilization methods that effectively make antigens accessible without destroying the tissue morphology or the antigen. Embryos are surrounded by a chitinous eggshell and larvae and adults are surrounded by a collagenous cuticle, each of which must be permeabilized to allow penetration of antibodies. In addition, antigens and antibodies are sensitive to different fixing and permeabilizing conditions. For example, some antibodies do not work well on paraformaldehyde-fixed samples, and others are sensitive to incubation in acetone. There are many protocols used in the C. elegans field; additional protocols are summarized in Miller and Shakes (1994) and on the C. elegans World
-
[
WormBook,
2005]
Cell-division control affects many aspects of development. Caenorhabditis elegans cell-cycle genes have been identified over the past decade, including at least two distinct Cyclin-Dependent Kinases (CDKs), their cyclin partners, positive and negative regulators, and downstream targets. The balance between CDK activation and inactivation determines whether cells proceed through G 1 into S phase, and from G 2 to M, through regulatory mechanisms that are conserved in more complex eukaryotes. The challenge is to expand our understanding of the basic cell cycle into a comprehensive regulatory network that incorporates environmental factors and coordinates cell division with growth, differentiation and tissue formation during development. Results from several studies indicate a critical role for CKI-1 , a CDK inhibitor of the Cip/Kip family, in the temporal control of cell division, potentially acting downstream of heterochronic genes and dauer regulatory pathways.
-
[
WormBook,
2006]
The C. elegans genome encodes many RNA-binding proteins (RBPs) with diverse functions in development, indicative of extensive layers of post-transcriptional control of RNA metabolism. A number of C. elegans RBPs have been identified by forward or reverse genetics. They tend to display tissue-specific mutant phenotypes, which underscore their functional importance. In addition, several RBPs that bind regulatory sequences in the 3'' untranslated regions of mRNAs have been identified molecularly. Most C. elegans RBPs are conserved throughout evolution, suggesting that their study in C. elegans may uncover new conserved biological functions. In this review, we primarily discuss RBPs that are associated with well-characterized mutant phenotypes in the germ line, the early embryo, or in somatic tissues. We also discuss the identification of RNA targets of RBPs, which is an important first step to understand how an RBP controls C. elegans development. It is likely that most RBPs regulate multiple RNA targets. Once multiple RNA targets are identified, specific features that distinguish target from non-target RNAs and the type(s) of RNA metabolism that each RBP controls can be determined. Furthermore, one can determine whether the RBP regulates all targets by the same mechanism or different targets by distinct mechanisms. Such studies will provide insights into how RBPs exert coordinate control of their RNA targets, thereby affecting development in a concerted fashion.
-
[
1992]
In vertebrates, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are polymorphic enzymes presenting both globular and asymmetric forms. In invertebrates, only AChE has been characterized so far that presents a reduced molecular diversity. In insects for example the major molecular form of AChE is an amphiphilic dimeric form attached to the membrane through a glycolipid covalently linked at the C-terminus of each catalytic subunit. This AChE has a substrate specificity intermediate to those of mammalina AChE and BChE. A glycoplipid-anchored 7.5S from has also been observed in the trematode Schistosoma mansoni. Asymmetric forms have never been convincingly reported in invertebrates except in the more evolved animals such as Amphioxius. In the latter case also there is no BChE but AChE presents catalytic properties intermediate to those of vertebrate AChE and BChE. We are now interested in nematode AChE(s) for the following reasons: -several species are agricultural pest and it is important to get further informations on the target of potential nematicides; -it has been shown that at least three different genes code for AChE in Caenorhabditis elegans. It is therefore interesting to see whether the presence of multiple genes results in an increased molecular diversity, to define what are the structural characteristics of each gene product and finally to clone and sequence thee three genes for evolutionary relationships with the other members of the cholinesterase
-
[
WormBook,
2006]
Transposons are discrete segments of DNA capable of moving through the genome of their host via an RNA intermediate in the case of class I retrotransposon or via a "cut-and-paste" mechanism for class II DNA transposons. Since transposons take advantage of their host''s cellular machinery to proliferate in the genome and enter new hosts, transposable elements can be viewed as parasitic or "selfish DNA". However, transposons may have been beneficial for their hosts as genome evolution drivers, thus providing an example of molecular mutualism. Interactions between transposon and C. elegans research were undoubtedly mutualistic, leading to the advent of needed genomic tools to drive C. elegans research while providing insights into the transposition field. Tc1, the first C. elegans transposon to be identified, turned out to be the founding member of a widespread family of mobile elements: the Tc1/ mariner superfamily. The investigation into transposition regulation in C. elegans has uncovered an unforeseen link between transposition, genome surveillance and RNA interference. Conversely, transposons were utilized soon after their identification to inactivate and clone genes, providing some of the first molecular identities of C. elegans genes. Recent results suggest that transposons might provide a means to engineer site-directed mutations into the C. elegans genome. This article describes the different transposons present in the C. elegans genome with a specific emphasis on the ones that proved to be mobile under laboratory conditions. Mechanisms and control of transposition are discussed briefly. Some tools based on the use of transposons for C. elegans research are presented at the end of this review.
-
[
1987]
Vitellogenins of many insects, vertebrates, nematodes and sea urchins are very similar in size and amino acid composition. We have determined the nucleotide sequences of the genes that encode vitellogenins in nematodes (C. elegans) and sea urchins (S. purpuratus), and compared the deduced amino acid sequences to the published sequences of two vertebrate vitellogenins (X. laevis and G. gallus). This comparison demonstrated unequivocally that the nematode and vertebrate proteins are encoded by distant members of a single gene family. The less extensive sequence data available for the sea urchin gene indicates that this, too, may be a member of this family of genes, as may the vitellogenin genes of locust. On the other hand, we were unable to detect any similarity between these genes and the D. melanogaster yolk protein genes. Thus it appears that while nematodes, vertebrates, sea urchins and at least some insects utilize the same family of genes to encode vitellogenins, Drosophila uses a different gene family. All of the vitellogenin genes are regulated in a tissue-specific manner. They are expressed in the intestine in nematodes, in the liver in vertebrates, in the fat body in insects, and in the intestine and gonad in sea urchins. Their production is limited to adult females in all species except sea urchins, in which they are expressed by adults of both sexes. In nematodes we have identified two heptameric sequence elements repeated multiple times in all eleven of the vitellogenin genes sequenced. One of these elements is also present in the vertebrate promoters and has recently been shown to be required for transcriptional activation. All of the 5' ends of the vitellogenin mRNAs of nematodes, vertebrates and locust can be folded into potentially-stable secondary structures. We present evidence that these structures have been strongly selected for and presumably perform some function in regulation of vitellogenin production.
-
[
WormBook,
2005]
In mammals, flies, and worms, sex is determined by distinctive regulatory mechanisms that cause males (XO or XY) and females (XX) to differ in their dose of X chromosomes. In each species, an essential X chromosome-wide process called dosage compensation ensures that somatic cells of either sex express equal levels of X-linked gene products. The strategies used to achieve dosage compensation are diverse, but in all cases, specialized complexes are targeted specifically to the X chromosome(s) of only one sex to regulate transcript levels. In C. elegans, this sex-specific targeting of the dosage compensation complex (DCC) is controlled by the same developmental signal that establishes sex, the ratio of X chromosomes to sets of autosomes (X:A signal). Molecular components of this chromosome counting process have been defined. Following a common step of regulation, sex determination and dosage compensation are controlled by distinct genetic pathways. C. elegans dosage compensation is implemented by a protein complex that binds both X chromosomes of hermaphrodites to reduce transcript levels by one-half. The dosage compensation complex resembles the conserved 13S condensin complex required for both mitotic and meiotic chromosome resolution and condensation, implying the recruitment of ancient proteins to the new task of regulating gene expression. Within each C. elegans somatic cell, one of the DCC components also participates in the separate mitotic/meiotic condensin complex. Other DCC components play pivotal roles in regulating the number and distribution of crossovers during meiosis. The strategy by which C. elegans X chromosomes attract the condensin-like DCC is known. Small, well-dispersed X-recognition elements act as entry sites to recruit the dosage compensation complex and to nucleate spreading of the complex to X regions that lack recruitment sites. In this manner, a repressed chromatin state is spread in cis over short or long distances, thus establishing the global, epigenetic regulation of X chromosomes that is maintained throughout the lifetime of hermaphrodites.