-
[
Science,
2000]
Protein interaction mapping using large-scale two-hybrid analysis has been proposed as a way to functionally annotate large numbers of uncharacterized proteins predicted by complete genome sequences. This approach was examined in Caenorhabditis elegans, starting with 27 proteins involved in vulval development. The resulting map reveals both known and new potential interactions and provides a functional annotation for approximately 100 uncharacterized gene products. A protein interaction mapping project is now feasible for C. elegans on a genome-wide scale and should contribute to the understanding of molecular mechanisms in this organism and in human diseases.AD - Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA.FAU - Walhout, A JAU - Walhout AJFAU - Sordella, RAU - Sordella RFAU - Lu, XAU - Lu XFAU - Hartley, J LAU - Hartley JLFAU - Temple, G FAU - Temple GFFAU - Brasch, M AAU - Brasch MAFAU - Thierry-Mieg, NAU - Thierry-Mieg NFAU - Vidal, MAU - Vidal MLA - engID - 1 R21 CA81658 A 01/CA/NCIID - 1 RO1 HG01715-01/HG/NHGRIPT - Journal ArticleCY - UNITED STATESTA - ScienceJID - 0404511RN - 0 (Genetic Vectors)RN - 0 (Helminth Proteins)RN - 0 (LIN-35 protein)RN - 0 (LIN-53 protein)RN - 0 (Repressor Proteins)RN - 0 (Retinoblastoma Protein)SB - IM
-
[
Parasitol Today,
1994]
How cell lineages are established during development in higher eukaryotes is being addressed by geneticists and by developmental and molecular biologists. In Drosophila melanogaster, a gene corresponding to a germ-line-specific RNA helicase, vasa, has been shown to be a component o f the posteriorly localized germ granules o f the developing embryo. A putative RNA helicase, glh-I r which appears germ-line specific in its expression, has recently been reported from the free-living nematode Caenorhabditis elegans. Parasitologists studying the nematode Ascaris lumbricoides var. suum have found it to be a useful complement to Caenorhabditis. Deborah Roussell, Michael Gruidl and Karen Bennett predict that Ascaris will be valuable in determining the role played by germ-line helicases in development.
-
[
MicroPubl Biol,
2017]
Early embryos were fixed and stained with Mab F2F4 (green), shown to recognize CYB-3 (Michael, 2016), and DAPI, to illuminate the DNA (blue). Either wild type or
par-4 mutant embryos were examined, after 24-hour incubation at 25C (the non-permissive temperature for the
it47 allele of
par-4). Anterior is to the left in all images. The data presented here reveals previously not shown data that depicts CYB-3 as asymmetrically distributed at the 4-cell stage. These data further support reported findings in Michael, 2016. There is more CYB-3 in the AB cell relative to its sister P1. In 4-cell embryos there is more CYB-3 in the EMS cell relative to its sister, P2. Thus, during P-lineage divisions, CYB-3 is asymmetrically distributed such that the somatic precursor receives more than its germline precursor sister cell. This asymmetry is abolished in
par-4 mutant embryos, where all blastomeres contain equivalent amounts of CYB-3.
-
Medeiros A, Fontan P, Jancik V, Melendrez J, Saiz C, Vairoletti F, Tabarez C, Mahler G, Franco J, Salinas G, Comini MA, Saldana J
[
Medchemcomm,
2019]
1,4-Thiazepines derivatives are pharmacologically important heterocycles with different applications in medicinal chemistry. In the present work, we describe the preparation of new bicyclic thiazolidinyl-1,4-thiazepines <b>3</b> by reaction between azadithiane compounds and Michael acceptors. The reaction scope was explored and the yields were optimized. The activity of the new compounds was evaluated against <i>Nippostrongylus brasiliensis</i> and <i>Caenorhabditis elegans</i> as anthelmintic models and <i>Trypanosoma brucei brucei.</i> The most active compound was <b>3l</b>, showing an EC<sub>50</sub> = 2.8 +/- 0.7 M against <i>T. b. brucei</i> and a selectivity index >71.
-
Doucette-Stamm L, Lamesch PE, Reboul J, Temple GF, Hartley JL, Brasch MA, Hill DE, Vaglio P, Thierry-Mieg N, Shin-i T, Lee H, Moore T, Vandenhaute J, Kohara Y, Vidal M, Jackson C, Thierry-Mieg J, Tzellas N, Thierry-Mieg D, Hitti J
[
Nat Genet,
2001]
The genome sequences of Caenorhabditis elegans, Drosophila melanogaster and Arabidopsis thaliana have been predicted to contain 19,000, 13,600 and 25,500 genes, respectively. Before this information can be fully used for evolutionary and functional studies, several issues need to be addressed. First, the gene number estimates obtained in silico and not yet supported by any experimental data need to be verified. For example, it seems biologically paradoxical that C. elegans would have 50% more genes than Drosophilia. Second, intron/exon predictions need to be tested experimentally. Third, complete sets of open reading frames (ORFs), or "ORFeomes," need to be cloned into various expression vectors. To address these issues simultaneously, we have designed and applied to C. elegans the following strategy. Predicted ORFs are amplified by PCR from a highly representative cDNA library using ORF-specific primers, cloned by Gateway recombination cloning and then sequenced to generate ORF sequence tags (OSTs) as a way to verify identity and splicing. In a sample (n=1,222) of the nearly 10,000 genes predicted ab initio (that is, for which no expressed sequence tag (EST) is available so far), at least 70% were verified by OSTs. We also observed that 27% of these experimentally confirmed genes have a structure different from that predicted by GeneFinder. We now have experimental evidence that supports the existence of at least 17,300 genes in C. elegans. Hence we suggest that gene counts based primarily on ESTs may underestimate the number of genes in human and in other organisms.AD - Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.FAU - Reboul, JAU - Reboul JFAU - Vaglio, PAU - Vaglio PFAU - Tzellas, NAU - Tzellas NFAU - Thierry-Mieg, NAU - Thierry-Mieg NFAU - Moore, TAU - Moore TFAU - Jackson, CAU - Jackson CFAU - Shin-i, TAU - Shin-i TFAU - Kohara, YAU - Kohara YFAU - Thierry-Mieg, DAU - Thierry-Mieg DFAU - Thierry-Mieg, JAU - Thierry-Mieg JFAU - Lee, HAU - Lee HFAU - Hitti, JAU - Hitti JFAU - Doucette-Stamm, LAU - Doucette-Stamm LFAU - Hartley, J LAU - Hartley JLFAU - Temple, G FAU - Temple GFFAU - Brasch, M AAU - Brasch MAFAU - Vandenhaute, JAU - Vandenhaute JFAU - Lamesch, P EAU - Lamesch PEFAU - Hill, D EAU - Hill DEFAU - Vidal, MAU - Vidal MLA - engID - R21 CA81658 A 01/CA/NCIID - RO1 HG01715-01/HG/NHGRIPT - Journal ArticleCY - United StatesTA - Nat GenetJID - 9216904SB - IM
-
[
PLoS One,
2011]
BACKGROUND: Many bacteria, including Vibrio spp., regulate virulence gene expression in a cell-density dependent way through a communication process termed quorum sensing (QS). Hence, interfering with QS could be a valuable novel antipathogenic strategy. Cinnamaldehyde has previously been shown to inhibit QS-regulated virulence by decreasing the DNA-binding ability of the QS response regulator LuxR. However, little is known about the structure-activity relationship of cinnamaldehyde analogs. METHODOLOGY/PRINCIPAL FINDINGS: By evaluating the QS inhibitory activity of a series of cinnamaldehyde analogs, structural elements critical for autoinducer-2 QS inhibition were identified. These include an , unsaturated acyl group capable of reacting as Michael acceptor connected to a hydrophobic moiety and a partially negative charge. The most active cinnamaldehyde analogs were found to affect the starvation response, biofilm formation, pigment production and protease production in Vibrio spp in vitro, while exhibiting low cytotoxicity. In addition, these compounds significantly increased the survival of the nematode Caenorhabditis elegans infected with Vibrio anguillarum, Vibrio harveyi and Vibrio vulnificus. CONCLUSIONS/SIGNIFICANCE: Several new and more active cinnamaldehyde analogs were discovered and they were shown to affect Vibrio spp. virulence factor production in vitro and in vivo. Although ligands for LuxR have not been identified so far, the nature of different cinnamaldehyde analogs and their effect on the DNA binding ability of LuxR suggest that these compounds act as LuxR-ligands.
-
[
FEMS Yeast Res,
2018]
Candida albicans, one most prevalent fungal pathogen, causes severe mucosal and invasive infections in predisposed individuals. The rise of fungal infection and drug-resistance demands the development of novel antifungal agents. In this study, we observed that floricolin C (FC), a p-terphenyl pigment from an endolichenic fungus, killed C. albicans cells at planktonic state or within biofilms through reactive oxygen species (ROS) accumulation. Further test revealed that FC could directly damage the mitochondria to cause ROS accumulation. In addition, FC can quench thiol-based agents through a Michael reaction involving the ,-unsaturated carbonyl group, whose effect may chelate intracellular thiol-based molecules or proteins in C. albicans, resulting in imbalance of redox homeostasis. Increased ROS generation led to mitochondria dysfunction, nuclear dispersion, and consequently cell death. We further demonstrated that FC could prevent biofilm formation of other Candida species and eradicate their pre-formed biofilms. In vivo study demonstrated that FC prolonged the survival of C. albicans-infected Caenorhabditis elegans. Taken together, our study provides a basis for the application of FC to combat Candida infections.
-
[
Parasitol Res,
2019]
A novel library of synthetic piperidine derivatives was used to screen against human lymphatic filarial parasite Brugia malayi. Piperidine has earlier been reported to have effect against parasites including rodent filarial nematodes. Compounds with hydroxyl substitutions (4Q and 4H) showed marked antifilarial effect. Molecular docking of 4H derivative showed more favorable thermodynamic parameters against thymidylate synthase of B. malayi than human counterpart. A wide difference between IC<sub>50</sub> and LD<sub>50</sub> ensured the therapeutic safety of the candidates against the filarial parasites. Addition of thymidine to the treatment regimen led to a significant reversal of antifilarial effect of 4H that confirmed inhibition of thymidylate synthase as pharmacological rationale. Apoptosis induced in the parasite as a consequence of probable inhibition of thymidylate synthase was studied by acridine orange/ethidium bromide fluorescent staining and poly (ADP-ribose) polymerase activity inhibition. Involvement of mitochondria was confirmed by decreased 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) conversion and increased cytosolic cytochrome c level in 4H treated microfilariae, compared with the untreated microfilariae. Moreover, Michael adduct of chalcone targeting dihydrofolate reductase and piperidine targeting thymidylate synthase demonstrated synergistic effect on the parasite, indicating the importance of inhibition of DNA synthesis by combined effect. In conclusion, piperidine derivatives with hydroxyl substitution have a great therapeutic potential with an apoptotic rationale involving mitochondrial pathway, due to possible inhibition of parasitic thymidylate synthase.
-
Pennington PR, Heistad RM, Nyarko JNK, Barnes JR, Bolanos MAC, Parsons MP, Knudsen KJ, De Carvalho CE, Leary SC, Mousseau DD, Buttigieg J, Maley JM, Quartey MO
[
Sci Rep,
2021]
The pool of -Amyloid (A) length variants detected in preclinical and clinical Alzheimer disease (AD) samples suggests a diversity of roles for A peptides. We examined how a naturally occurring variant, e.g. A(1-38), interacts with the AD-related variant, A(1-42), and the predominant physiological variant, A(1-40). Atomic force microscopy, Thioflavin T fluorescence, circular dichroism, dynamic light scattering, and surface plasmon resonance reveal that A(1-38) interacts differently with A(1-40) and A(1-42) and, in general, A(1-38) interferes with the conversion of A(1-42) to a -sheet-rich aggregate. Functionally, A(1-38) reverses the negative impact of A(1-42) on long-term potentiation in acute hippocampal slices and on membrane conductance in primary neurons, and mitigates an A(1-42) phenotype in Caenorhabditis elegans. A(1-38) also reverses any loss of MTT conversion induced by A(1-40) and A(1-42) in HT-22 hippocampal neurons and APOE 4-positive human fibroblasts, although the combination of A(1-38) and A(1-42) inhibits MTT conversion in APOE 4-negative fibroblasts. A greater ratio of soluble A(1-42)/A(1-38) [and A(1-42)/A(1-40)] in autopsied brain extracts correlates with an earlier age-at-death in males (but not females) with a diagnosis of AD. These results suggest that A(1-38) is capable of physically counteracting, potentially in a sex-dependent manner, the neuropathological effects of the AD-relevant A(1-42).
-
Kirshner A, Eddins D, French R, Helmcke K, Page GP, Linney E, Lnenicka G, Berger K, Welsh-Bohmer KA, Corl AB, Levin ED, Hirsch HV, Aschner M, Bartlett S, Possidente B, Hayden KM, Chen L, Possidente D, Ruden D, Heberlein U
[
Neurotoxicology,
2009]
Considerable progress has been made over the past couple of decades concerning the molecular bases of neurobehavioral function and dysfunction. The field of neurobehavioral genetics is becoming mature. Genetic factors contributing to neurologic diseases such as Alzheimer's disease have been found and evidence for genetic factors contributing to other diseases such as schizophrenia and autism are likely. This genetic approach can also benefit the field of behavioral neurotoxicology. It is clear that there is substantial heterogeneity of response with behavioral impairments resulting from neurotoxicants. Many factors contribute to differential sensitivity, but it is likely that genetic variability plays a prominent role. Important discoveries concerning genetics and behavioral neurotoxicity are being made on a broad front from work with invertebrate and piscine mutant models to classic mouse knockout models and human epidemiologic studies of polymorphisms. Discovering genetic factors of susceptibility to neurobehavioral toxicity not only helps identify those at special risk, it also advances our understanding of the mechanisms by which toxicants impair neurobehavioral function in the larger population. This symposium organized by Edward Levin and Annette Kirshner, brought together researchers from the laboratories of Michael Aschner, Douglas Ruden, Ulrike Heberlein, Edward Levin and Kathleen Welsh-Bohmer conducting studies with Caenorhabditis elegans, Drosophila, fish, rodents and humans studies to determine the role of genetic factors in susceptibility to behavioral impairment from neurotoxic exposure.