-
[
Biol Reprod,
2022]
Zinc influx and efflux events are essential for meiotic progression in oocytes of several mammalian and amphibian species, but it is less clear whether this evolutionary conservation of zinc signals is also important in late-stage germline development in invertebrates. Using quantitative, single cell elemental mapping methods, we find that Caenorhabditis elegans oocytes undergo significant stage-dependent fluctuations in total zinc content, rising by over sevenfold from Prophase I through the beginning of mitotic divisions in the embryo. Live imaging of the rapid cell cycle progression in C. elegans enables us to follow changes in labile zinc pools across meiosis and mitosis in single embryo. We find a dynamic increase in labile zinc prior to fertilization that then decreases from Anaphase II through pronuclear fusion and relocalizes to the eggshell. Disruption of these zinc fluxes blocks extrusion of the second polar body, leading to a range of mitotic defects. We conclude that spatial temporal zinc fluxes are necessary for meiotic progression in C. elegans and are a conserved feature of germ cell development in a broad cross section of metazoa.
-
[
Comp Biochem Physiol C Toxicol Pharmacol,
2016]
Zinc is an essential metal that serves as a cofactor and structural regulator in a variety of cellular processes, including meiotic maturation. Cellular control of zinc uptake, availability and efflux are closely linked to meiotic progression in rodent and primate reproduction where large fluctuations in zinc levels are critical at several steps in the oocyte-to-embryo transition. Despite these well-documented roles of zinc fluxes during meiosis, only a few of the genes encoding key zinc receptors, membrane-spanning transporters, and downstream signaling pathway factors have been identified to date. Furthermore, little is known about analogous roles for zinc fluxes in the context of a whole organism. Here, we evaluate whether zinc availability regulates germline development and oocyte viability in the nematode Caenorhabditis elegans, an experimentally flexible model organism. We find that similar to mammals, mild zinc limitation in C. elegans profoundly impacts the reproductive axis: the brood size is significantly reduced under conditions of zinc limitation where other physiological functions are not perturbed. Zinc limitation in this organism has a more pronounced impact on oocytes than sperm and this leads to the decrease in viable embryo production. Moreover, acute zinc limitation of isolated zygotes prevents extrusion of the second polar body during meiosis and leads to aneuploid embryos. Thus, the zinc-dependent steps in C. elegans gametogenesis roughly parallel those described in meiotic-to-mitotic transitions in mammals.
-
[
Proc Natl Acad Sci U S A,
2024]
Zinc is an essential nutrient-it is stored during periods of excess to promote detoxification and released during periods of deficiency to sustain function. Lysosome-related organelles (LROs) are an evolutionarily conserved site of zinc storage, but mechanisms that control the directional zinc flow necessary for homeostasis are not well understood. In <i>Caenorhabditis elegans</i> intestinal cells, the CDF-2 transporter stores zinc in LROs during excess. Here, we identify ZIPT-2.3 as the transporter that releases zinc during deficiency; ZIPT-2.3 transports zinc, localizes to the membrane of LROs in intestinal cells, and is necessary for zinc release from LROs and survival during zinc deficiency. In zinc excess and deficiency, the expression levels of CDF-2 and ZIPT-2.3 are reciprocally regulated at the level of mRNA and protein, establishing a fundamental mechanism for directional flow to promote homeostasis. To elucidate how the ratio of CDF-2 and ZIPT-2.3 is altered, we used super-resolution microscopy to demonstrate that LROs are composed of a spherical acidified compartment and a hemispherical expansion compartment. The expansion compartment increases in volume during zinc excess and deficiency. These results identify the expansion compartment as an unexpected structural feature of LROs that facilitates rapid transitions in the composition of zinc transporters to mediate homeostasis, likely minimizing the disturbance to the acidified compartment.
-
[
Sci Total Environ,
2016]
Determination of water quality status in rivers is critical to establish a sustainable water management policy. For this reason, over the last decades it has been recommended to perform integrated water assessments that include water quantities and physicochemical, ecological and toxicological tests. However, sometimes resources are limited and it is not possible to perform large-scale chemical determinations of pollutants or conduct numerous ecotoxicological tests. To overcome this problem we use and measure the growth, as a response parameter, of the soil nematode Caenorhabditis elegans to assess water quality in rivers. The C. elegans is a ubiquitous organism that has emerged as an important model organism in aquatic and soil toxicology research. The Tunuyan River Basin (Province of Mendoza, Argentina) has been selected as a representative traditional water monitoring system to test the applicability of the C. elegans toxicological bioassay to generate an integrated water quality evaluation. Jointly with the C. elegans toxic assays, physicochemical and bacteriological parameters were determined for each monitoring site. C. elegans bioassays help to identify different water qualities in the river basin. Multivariate statistical analysis (PCA and linear regression models) has allowed us to confirm that traditional water quality studies do not predict potential toxic effects on living organisms. On the contrary, physicochemical and bacteriological analyzes explain <62% of the C. elegans growth response variability, showing that ecotoxicological bioassays are important to obtain a realistic scenario of water quality threats. Our results confirm that the C. elegans bioassay is a sensible and suitable tool to assess toxicity and should be implemented in routine water quality monitoring.
-
[
Cell Calcium,
2006]
Periodic behavioral motor patterns are normally controlled by neural circuits, such as central pattern generators. We here report a novel mechanism of motor pattern generation by non-neural cells. The defecation motor program in Caenorhabditis elegans consists of three stereotyped motor steps with precise timing and this behavior has been studied as a model system of a ultradian biological clock [J.H. Thomas, Genetic analysis of defecation in C. elegans, Genetics 124 (1990) 855-872; D.W. Liu, J.H. Thomas, Regulation of a periodic motor program in C. elegans, J. Neurosci. 14 (1994) 1953-1962; K. Iwasaki, D.W. Liu, J.H. Thomas, Genes that control a temperature-compensated ultradian clock in Caenorhabditis elegans, Proc. Natl. Acad. Sci. USA 92 (1995), 10317-10321]. It was previously implied that the inositol-1,4,5-trisphosphate (IP3) receptor in the intestine was necessary for this periodic behavior [P. Dal Santo, M.A. Logan, A.D. Chisholm, E.M. Jorgensen, The inositol trisphosphate receptor regulates a 50s behavioral rhythm in C. elegans, Cell 98 (1999) 757-767]. Therefore, we developed a new assay system to study a relationship between this behavioral timing and intestinal Ca(2+) dynamics. Using this assay system, we found that the timing between the first and second motor steps is coordinated by intercellular Ca(2+)-wave propagation in the intestine. Lack of the Ca(2+)-wave propagation correlated with no coordination of the motor steps in the CaMKII mutant. Also, when the Ca(2+)-wave propagation was blocked by the IP3 receptor inhibitor heparin at the mid-intestine in wild type, the second/third motor steps were eliminated, which phenocopied ablation of the motor neurons AVL and DVB. These observations suggest that an intestinal Ca(2+)-wave propagation governs the timing of neural activities that controls specific behavioral patterns in C. elegans.