-
[
Zootaxa,
2022]
Rhagovelia medinae sp. nov., of the hambletoni group (angustipes complex), and R. utria sp. nov., of the hirtipes group (robusta complex), are described, illustrated, and compared with similar congeners. Based on the examination of type specimens, six new synonymies are proposed: R. elegans Uhler, 1894 = R. pediformis Padilla-Gil, 2010, syn. nov.; R. cauca Polhemus, 1997 = R. azulita Padilla-Gil, 2009, syn. nov., R. huila Padilla-Gil, 2009, syn. nov., R. oporapa Padilla-Gil, 2009, syn. nov, R. quilichaensis Padilla-Gil, 2011, syn. nov.; and R. gaigei, Drake Hussey, 1947 = R. victoria Padilla-Gil, 2012 syn. nov. The first record from Colombia is presented for R. trailii (White, 1879), and the distributions of the following species are extended in the country: R. cali Polhemus, 1997, R. castanea Gould, 1931, R. cauca Polhemus, 1997, R. gaigei Drake Hussey, 1957, R. elegans Uhler, 1894, R. femoralis Champion, 1898, R. malkini Polhemus, 1997, R. perija Polhemus, 1997, R. sinuata Gould, 1931, R. venezuelana Polhemus, 1997, R. williamsi Gould, 1931, and R. zeteki Drake, 1953.
-
[
Nucleic Acids Res,
2012]
Chromatin immunoprecipitation coupled with massive parallel sequencing (ChIP-seq) is increasingly used to map protein-chromatin interactions at global scale. The comparison of ChIP-seq profiles for RNA polymerase II (PolII) established in different biological contexts, such as specific developmental stages or specific time-points during cell differentiation, provides not only information about the presence/accumulation of PolII at transcription start sites (TSSs) but also about functional features of transcription, including PolII stalling, pausing and transcript elongation. However, annotation and normalization tools for comparative studies of multiple samples are currently missing. Here, we describe the R-package POLYPHEMUS, which integrates TSS annotation with PolII enrichment over TSSs and coding regions, and normalizes signal intensity profiles. Thereby POLYPHEMUS facilitates to extract information about global PolII action to reveal changes in the functional state of genes. We validated POLYPHEMUS using a kinetic study on retinoic acid-induced differentiation and a publicly available data set from a comparative PolII ChIP-seq profiling in Caenorhabditis elegans. We demonstrate that POLYPHEMUS corrects the data sets by normalizing for technical variation between samples and reveal the potential of the algorithm in comparing multiple data sets to infer features of transcription regulation from dynamic PolII binding profiles.
-
[
Clin Diagn Lab Immunol,
2005]
Studies to determine the prevalence of antibodies to Onchocerca volvulus, prior to and after actions carried out to interrupt transmission, are scarce in Mexico. Here we report the prevalence of immunoglobulin G (IgG) and IgG4 antibodies in an enzyme-linked immunosorbent assay (ELISA) against a crude extract of O. volvulus adult worm in serum samples from persons under noninterrupted biannual treatment with ivermectin in areas of onchocercosis endemicity in Mexico. To perform the prevalence studies, the ELISA procedures were first evaluated. Serological studies were performed with serum samples from skin microfilaria carriers from Guatemala and from people microfilariodermic negative living in the same area as the Guatemalan patients. Sensitivity values for IgG or IgG4 detection were 71 and 86%, while specificities were 92 and 100%, respectively. No anti-O. volvulus antibodies were found in samples from nonendemic controls from Mexico, but 3 of 71 samples from residents in the onchocercosis area of Oaxaca, Mexico, and who have been under ivermectin treatment during the last 10 years were only positive to IgG. Notwithstanding that the IgG4 isotype was not detected and a low (4.2%) anti-O. volvulus IgG antibody prevalence was found, a seroepidemiological follow-up must be performed in order to confirm interruption of onchocercosis transmission in the area of Oaxaca, Mexico, in which onchocercosis is endemic.
-
[
J Biol Chem,
1990]
The nematode Caenorhabditis elegans (C. elegans) expresses the regulatory subunit (R) of cAMP-dependent protein kinase at a level similar to the levels determined for R subunits in mammalian tissues. Approximately 60% of the C. elegans cAMP-binding protein is tightly associated with particulate structures by noncovalent interactions. Ionic detergents or 7 M urea solubilize particulate R. Solubilized and cytosolic R subunits have apparent Mr values of 52,000 and pI values of 5.5. cDNA and genomic DNA encoding a unique C. elegans R subunit were cloned and sequenced. The derived amino acid sequence contains 375 residues; carboxyl-terminal residues 145-375 are 69% identical with mammalian RI. However, residues 44-145 are markedly divergent from the corresponding regions of all other R sequences. This region might provide sufficient structural diversity to adapt a single R subunit for multiple functional roles in C. elegans. Antibodies directed against two epitopes in the deduced amino acid sequence of C. elegans R avidly bound nematode cytosolic and particulate R subunits on Western blots and precipitated dissociated R subunits and R2C2 complexes from solution. Immunofluorescence analysis revealed that the tip of the head, which contains chemosensory and mechanosensory neurons, and the pharyngeal nerve ring were enriched in R. The R subunit concentration is low during early embryogenesis in C. elegans. A sharp increase (approximately 6-fold) in R content begins several hours before the nematodes hatch and peaks during the first larval stage. Developmental regulation of R expression occurs at translational and/or post-translational levels. The 8-kilobase pair C. elegans R gene is divided into 8 exons by introns ranging from 46 to 4300 base pairs. The 5'-flanking region has no TATA box and contains preferred and minor transcription start sites.
-
[
Worm Breeder's Gazette,
1994]
R-ras I and R-ras 2 (TC21) homologs Per Winge*, Vercna Gobel*+, Stephen Friend*, and John Fleming*+. MGH Cancer Center and +DepL of Pediatrics, Boston, MA. Human r-ras 1 and r-ras 2 (TC21) belong to the closer relatives (>50% amino acid identity) of ras in the ras superfamily of GDP/GTP-binding proteins. They are the first members to exhibit transforming potential when mutated at some which render ras oncogenic and make it insensitive to GAP action (Graham & Der, 1994). These recent findings have led to current investigations of their role-in human cancer. Furthermore, r-ras 1 -- by immunoprecipitation and in the yeast-2-hybrid-system -- was shown to interact with
bc1-2, the human homolog to
ced-9 (Fernandez-Sarabia & Bischoff, 1993) and has thus been implicated as a possible effector of apoptosis. There is evidence that the r-ras proteins participate in some but not all aspects of the ras signal transduction pathway involving upstream tyrosinc kinases and downstream serine/threonine kinases. It has not yet been elucidated in the mammalian system (1) what alternative pathway the r-ras proteins may be utilizing and (2) what functional relevance is represented by the in vitro interaction of r-ras 1 and
bc1-2. We are trying to address these questions in C elegans and have cloned the homologs of r-ras I and r-ras 2 using a degeneratc PCR approach. We have screened c-DNA and genomic libraries and obtamed and sequenced full length c-DNA and genomic clones of r-ras 1 and a full length c-DNA clone of r- ras 2. The genomic sequence of r-ras 2 was recently made available by the genome sequencing project. The amino acid comparison shows high homologyrldentity to thc human proteins for r-ras 1 and r-ras 2 (TC21). R-ras 1 was localizcd to chromosome II ncar
lin-29, and r-ras 2 maps close to embS on chromosome m. To obtain r-ras germline deletions, we have screened a TCl insertion library which we constructed using the mutator strain MT 3126 (protocols kindly proYided by Jocl Rothman, Susan Mango and Ed Maryon), and have isolated transposon insertions in r-ras 1. We are currently in the proccss of sib sclection to purify the strains. To get some first appreciation of a functional role of r-ras towards apoptosis versus growth stimulating propertics, we have also started to inject a r-ras 1 hcat shock promotor expression construct to generatc strains in which r-ras can be overexpressed Ihis additional approach has been choscn since redundancy may be expected in thc ras related protcin familics and thus thc knockout of one of the proteins may not give clear results. We will screen the overexpressing strains for (1) apoptosis and (2) muv phcnotype. In collaboration with Bob Horvitz's laboratory r-ras GST fusion proteins will be generated to test the in vitro interacion with
ccd-9. Finally, we are constructing r-ras 1 and r-ras 2 promotor expression vectors with GFP/betaGAL to define the expression patterns of both genes.
-
[
Nat Commun,
2021]
R-bodies are long, extendable protein polymers formed in the cytoplasm of some bacteria; they are best known for their role in killing of paramecia by bacterial endosymbionts. Pseudomonas aeruginosa PA14, an opportunistic pathogen of diverse hosts, contains genes (referred to as the reb cluster) with potential to confer production of R-bodies and that have been implicated in virulence. Here, we show that products of the PA14 reb cluster associate with R-bodies and control stochastic expression of R-body structural genes.PA14 expresses reb genes during colonization of plant and nematode hosts, and R-body production is required for full virulence in nematodes. Analyses of nematode ribosome content and immune response indicate that P. aeruginosa R-bodies act via a mechanism involving ribosome cleavage and translational inhibition. Our observations provide insight into the biology of R-body production and its consequences during P. aeruginosa infection.
-
[
Dev Biol,
2024]
While the nervous system of bilaterian animals is mainly left-right (L-R) symmetric at the anatomical level, some molecular and functional L-R asymmetries exist. However, the extent of these molecular asymmetries and their functional consequences remain poorly characterized. C. elegans allows to study L-R asymmetries in the nervous system with single-neuron resolution. We have previously shown that a neural bHLH transcription factor, HLH-16/Olig, is L-R asymmetrically expressed in the AIY neuron lineage and regulates AIY axon projections in a L-R asymmetric manner. Here, by combining a candidate approach and single-cell RNA sequencing data analysis, we identify the ephrin protein EFN-2 and the Flamingo protein FMI-1 as downstream targets of HLH-16 that are L-R asymmetrically expressed in the AIY lineage. We show that EFN-2 and FMI-1 collaborate in the L-R asymmetric regulation of axonal growth. EFN-2 may act via a non-canonical receptor of the L1CAM family, SAX-7. Our study reveals novel molecular L-R asymmetries in the C. elegans nervous system and their functional consequences.
-
[
Commun Integr Biol,
2011]
The development of bilateral symmetry during the evolution of species probably 600 million years ago brought about several important innovations: It fostered efficient locomotion, streamlining and favored the development of a central nervous system through cephalization. However, to increase their functional capacities, many organisms exhibit chirality by breaking their superficial left-right (l-r) symmetry, which manifests in the lateralization of the nervous system or the l-r asymmetry of internal organs. In most bilateria, the mechanisms that maintain consistent l-r asymmetry throughout development are poorly understood. This review highlights insights into mechanisms that couple early embryonic l-r symmetry breaking to subsequent l-r patterning in the roundworm Caenorhabditis elegans. A recently identified strategy for l-r patterning in the early C. elegans embryo is discussed, the spatial separation of midline and anteroposterior axis, which relies on a rotational cellular rearrangement and non-canonical Wnt signaling. Evidence for a general relevance of rotational/torsional rearrangements during organismal l-r patterning and for non-canonical Wnt signaling/planar cell polarity as a common signaling mechanism to maintain l-r asymmetry is presented.
-
[
J Biol Chem,
2007]
The biological methyl donor, S adenosylmethionine (AdoMet), can exist in two diastereoisomeric states with respect to its sulfonium ion. The "S" configuration, (S,S)AdoMet, is the only form that is produced enzymatically as well as the only form used in almost all biological methylation reactions. Under physiological conditions, however, the sulfonium ion can spontaneously racemize to the "R" form, producing (R,S)AdoMet. As of yet, (R,S)AdoMet has no known physiological function and may inhibit cellular reactions. In this study, two enzymes have been found in Saccharomyces cerevisiae that are capable of recognizing (R,S)AdoMet and using it to methylate homocysteine to form methionine. These enzymes are the products of the SAM4 and MHT1 genes, previously identified as homocysteine methyltransferases dependent upon AdoMet and S-methylmethionine respectively. We find here that Sam4 recognizes both (S,S) and (R,S)AdoMet, but its activity is much higher with the R,S form. Mht1 reacts with only the R,S form of AdoMet while no activity is seen with the S,S form. R,S-specific homocysteine methyltransferase activity is also shown here to occur in extracts of Arabidopsis thaliana, Drosophila melanogaster, and Caenorhabditis elegans, but has not been detected in several tissue extracts of Mus musculus. Such activity may function to prevent the accumulation of (R,S)AdoMet in these organisms.
-
[
Mol Cell,
2013]
In this issue of Molecular Cell, Castellano-Pozo etal. (2013) describe a connection between R loop structures and histone 3 S10 phosphorylation (H3S10P), a mark of chromatin compaction. Their results constitute asignificant advance in our understanding of the role of R loops in genomic instability.