-
[
J Biol Chem,
1990]
The nematode Caenorhabditis elegans (C. elegans) expresses the regulatory subunit (R) of cAMP-dependent protein kinase at a level similar to the levels determined for R subunits in mammalian tissues. Approximately 60% of the C. elegans cAMP-binding protein is tightly associated with particulate structures by noncovalent interactions. Ionic detergents or 7 M urea solubilize particulate R. Solubilized and cytosolic R subunits have apparent Mr values of 52,000 and pI values of 5.5. cDNA and genomic DNA encoding a unique C. elegans R subunit were cloned and sequenced. The derived amino acid sequence contains 375 residues; carboxyl-terminal residues 145-375 are 69% identical with mammalian RI. However, residues 44-145 are markedly divergent from the corresponding regions of all other R sequences. This region might provide sufficient structural diversity to adapt a single R subunit for multiple functional roles in C. elegans. Antibodies directed against two epitopes in the deduced amino acid sequence of C. elegans R avidly bound nematode cytosolic and particulate R subunits on Western blots and precipitated dissociated R subunits and R2C2 complexes from solution. Immunofluorescence analysis revealed that the tip of the head, which contains chemosensory and mechanosensory neurons, and the pharyngeal nerve ring were enriched in R. The R subunit concentration is low during early embryogenesis in C. elegans. A sharp increase (approximately 6-fold) in R content begins several hours before the nematodes hatch and peaks during the first larval stage. Developmental regulation of R expression occurs at translational and/or post-translational levels. The 8-kilobase pair C. elegans R gene is divided into 8 exons by introns ranging from 46 to 4300 base pairs. The 5'-flanking region has no TATA box and contains preferred and minor transcription start sites.
-
[
Zootaxa,
2022]
Rhagovelia medinae sp. nov., of the hambletoni group (angustipes complex), and R. utria sp. nov., of the hirtipes group (robusta complex), are described, illustrated, and compared with similar congeners. Based on the examination of type specimens, six new synonymies are proposed: R. elegans Uhler, 1894 = R. pediformis Padilla-Gil, 2010, syn. nov.; R. cauca Polhemus, 1997 = R. azulita Padilla-Gil, 2009, syn. nov., R. huila Padilla-Gil, 2009, syn. nov., R. oporapa Padilla-Gil, 2009, syn. nov, R. quilichaensis Padilla-Gil, 2011, syn. nov.; and R. gaigei, Drake Hussey, 1947 = R. victoria Padilla-Gil, 2012 syn. nov. The first record from Colombia is presented for R. trailii (White, 1879), and the distributions of the following species are extended in the country: R. cali Polhemus, 1997, R. castanea Gould, 1931, R. cauca Polhemus, 1997, R. gaigei Drake Hussey, 1957, R. elegans Uhler, 1894, R. femoralis Champion, 1898, R. malkini Polhemus, 1997, R. perija Polhemus, 1997, R. sinuata Gould, 1931, R. venezuelana Polhemus, 1997, R. williamsi Gould, 1931, and R. zeteki Drake, 1953.
-
[
Dev Biol,
2024]
While the nervous system of bilaterian animals is mainly left-right (L-R) symmetric at the anatomical level, some molecular and functional L-R asymmetries exist. However, the extent of these molecular asymmetries and their functional consequences remain poorly characterized. C. elegans allows to study L-R asymmetries in the nervous system with single-neuron resolution. We have previously shown that a neural bHLH transcription factor, HLH-16/Olig, is L-R asymmetrically expressed in the AIY neuron lineage and regulates AIY axon projections in a L-R asymmetric manner. Here, by combining a candidate approach and single-cell RNA sequencing data analysis, we identify the ephrin protein EFN-2 and the Flamingo protein FMI-1 as downstream targets of HLH-16 that are L-R asymmetrically expressed in the AIY lineage. We show that EFN-2 and FMI-1 collaborate in the L-R asymmetric regulation of axonal growth. EFN-2 may act via a non-canonical receptor of the L1CAM family, SAX-7. Our study reveals novel molecular L-R asymmetries in the C. elegans nervous system and their functional consequences.
-
[
Commun Integr Biol,
2011]
The development of bilateral symmetry during the evolution of species probably 600 million years ago brought about several important innovations: It fostered efficient locomotion, streamlining and favored the development of a central nervous system through cephalization. However, to increase their functional capacities, many organisms exhibit chirality by breaking their superficial left-right (l-r) symmetry, which manifests in the lateralization of the nervous system or the l-r asymmetry of internal organs. In most bilateria, the mechanisms that maintain consistent l-r asymmetry throughout development are poorly understood. This review highlights insights into mechanisms that couple early embryonic l-r symmetry breaking to subsequent l-r patterning in the roundworm Caenorhabditis elegans. A recently identified strategy for l-r patterning in the early C. elegans embryo is discussed, the spatial separation of midline and anteroposterior axis, which relies on a rotational cellular rearrangement and non-canonical Wnt signaling. Evidence for a general relevance of rotational/torsional rearrangements during organismal l-r patterning and for non-canonical Wnt signaling/planar cell polarity as a common signaling mechanism to maintain l-r asymmetry is presented.
-
[
Channels (Austin),
2010]
All eukaryotic and some prokaryotic ClC anion transport proteins have extensive cytoplasmic C-termini containing two cystathionine--synthase (CBS) domains. CBS domain secondary structure is highly conserved and consists of two -helices and three -strands arranged as 1-1-2-3-2. ClC CBS domain mutations cause muscle and bone disease and alter ClC gating. However, the precise functional roles of CBS domains and the structural bases by which they regulate ClC function are poorly understood. CLH-3a and CLH-3b are C. elegans ClC anion channel splice variants with strikingly different biophysical properties. Splice variation occurs at cytoplasmic N- and C-termini and includes several amino acids that form 2 of the second CBS domain (CBS2). We demonstrate that interchanging 2 between CLH-3a and CLH-3b interchanges their gating properties. The "R-helix" of ClC proteins forms part of the ion-conducting pore and selectivity filter and is connected to the cytoplasmic C-terminus via a short stretch of cytoplasmic amino acids termed the "R-helix linker". C-terminus conformation changes could cause R-helix structural rearrangements via this linker. X-ray structures of three ClC protein cytoplasmic C-termini suggest that 2 of CBS2 and the R-helix linker could be closely apposed and may therefore interact. We found that mutating apposing amino acids in 2 and the R-helix linker of CLH-3b was sufficient to give rise to CLH-3a-like gating. We postulate that the R-helix linker interacts with CBS2 2, and that this putative interaction provides a pathway by which cytoplasmic C-terminus conformational changes induce conformational changes in membrane domains that in turn modulate ClC function.
-
[
Acta Crystallogr Sect F Struct Biol Cryst Commun,
2008]
Caenorhabditis elegans expresses two manganese superoxide dismutase enzymes (MnSOD-2 and MnSOD-3) that are targeted to the mitochondrion. MnSOD-2 is constitutively expressed, while synthesis of MnSOD-3 is inducible. The structures of these two mononuclear metalloenzymes have been determined to 1.8 and 1.7 A resolution, respectively. Pink crystals formed in space group P4(1)2(1)2 for each, with unit-cell parameters a = b = 81.0, c = 137.4 A for MnSOD-2 and a = b = 81.8, c = 136.0 A for MnSOD-3. The final structure of MnSOD-3 was refined to R = 21.6% and R(free) = 26.2% at 293 K, and R = 18.9% and R(free) = 22.6% at 100 K, while that of MnSOD-2 was refined to R = 16.9% and R(free) = 20.1% at 100 K. The asymmetric unit cell is comprised of two subunits. The resulting structures are very similar to that of human MnSOD and form a tetramer corresponding to a dimer of dimers. The subunit interface between dimers is comprised of two four-helix bundles that stabilize the biologically significant homotetramer.
-
[
Cell Signal,
2013]
The cAMP-dependent protein kinase (protein kinase A, PK-A) plays a key role in the control of eukaryotic cellular activity. The enzymology of PK-A in the free-living nematode, Caenorhabditis elegans is deceptively simple. Single genes encode the catalytic (C) subunit (
kin-1), the regulatory (R) subunit (
kin-2) and an A-kinase anchor protein (AKAP) (
aka-1); nonetheless, PK-A is able to facilitate a comprehensive array of cAMP-mediated processes in this model multicellular organism. We have previously demonstrated that, in C. elegans, as many as 12 different isoforms of the C-subunit arise as a consequence of alternative splicing strategies. Here, we report the occurrence of transcripts encoding novel isoforms of the PK-A R-subunit in C. elegans. In place of exons 1 and 2, these transcripts include coding sequences from novel B or Q exons directly linked to exon 3, thereby generating isoforms with novel N-termini. R-subunits containing an exon B-encoded N-terminal polypeptide sequence were detected in extracts prepared from mixed populations of C. elegans. Of note is the observation that R-subunit isoforms containing exon B- or exon Q-encoded polypeptide sequences lack the dimerisation/docking domains conventionally seen in R-subunits. This means that they are unlikely to participate in the formation of tetrameric PK-A holoenzymes and, additionally, they are unlikely to interact with AKAP(s). It is therefore possible that, in C. elegans, in addition to tetrameric (R(2)C(2)) PK-A holoenzymes, there is also a sub-population of dimeric (RC) PK-A enzymes that are not tethered by AKAPs. Furthermore, inspection of the N-terminal sequence encoded by exon B suggests that this isoform is a likely target for N-myristoylation. Although unusual, a number of similarly N-myristoylatable R-subunits, from a range of different species, are present in the databases, suggesting that this may be a more generally observed feature of R-subunit structure. The occurrence of R-subunit isoforms, without dimerisation/docking domains (with or without N-myristoylatable N-termini) in other species would suggest that the control of PK-A activity may be more complex than hitherto thought.
-
[
Sci Rep,
2020]
Caenorhabditis elegans presents functioning, biologically relevant phenotypes and is frequently used as a bioindicator of toxicity. However, most C. elegans in vivo effect-assessment methods are laborious and time consuming. Therefore, we developed a novel method to measure the oxygen consumption rate of C. elegans as a sublethal endpoint of toxicity. This protocol was tested by exposing 50 larval stage one C. elegans individuals for 48h (at 20C) to different concentrations of two toxicants i.e. benzylcetyldimethylammonium chloride (BAC-C16) and cadmium (Cd). Following exposures, the oxygen consumption rate of the C. elegans individuals were measured using the high-throughput functionality of the Seahorse XF<sup>e</sup>96 Extracellular Flux Analyzer. Dose-response curves for BAC-C16 (R<sup>2</sup>=0.93; P=0.001) and Cd (R<sup>2</sup>=0.98; P=0.001) were created. Furthermore, a strong, positive correlation was evidenced between C. elegans oxygen consumption rate and a commonly used, ecologically relevant endpoint of toxicity (growth inhibition) for BAC-C16 (R<sup>2</sup>=0.93; P=0.0001) and Cd (R<sup>2</sup>=0.91; P=0.0001). The data presented in this study show that C. elegans oxygen consumption rate can be used as a promising functional measurement of toxicity.
-
Schierenberg E, Schiffer PH, Frommolt P, Morris K, Camps JI, Blaxter ML, Nsah NA, Thomas WK, Heger P, Nurnberg P, Stappert D, Kroiher M, Kumar S, Koutsovoulos GD, Kraus C, Altmuller J
[
BMC Genomics,
2013]
BACKGROUND: The genetics of development in the nematode Caenorhabditis elegans has been described in exquisite detail. The phylum Nematoda has two classes: Chromadorea (which includes C. elegans) and the Enoplea. While the development of many chromadorean species resembles closely that of C. elegans, enoplean nematodes show markedly different patterns of early cell division and cell fate assignment. Embryogenesis of the enoplean Romanomermis culicivorax has been studied in detail, but the genetic circuitry underpinning development in this species has not been explored. RESULTS: We generated a draft genome for R. culicivorax and compared its gene content with that of C. elegans, a second enoplean, the vertebrate parasite Trichinella spiralis, and a representative arthropod, Tribolium castaneum. This comparison revealed that R. culicivorax has retained components of the conserved ecdysozoan developmental gene toolkit lost in C. elegans. T. spiralis has independently lost even more of this toolkit than has C. elegans. However, the C. elegans toolkit is not simply depauperate, as many novel genes essential for embryogenesis in C. elegans are not found in, or have only extremely divergent homologues in R. culicivorax and T. spiralis. Our data imply fundamental differences in the genetic programmes not only for early cell specification but also others such as vulva formation and sex determination. CONCLUSIONS: Despite the apparent morphological conservatism, major differences in the molecular logic of development have evolved within the phylum Nematoda. R. culicivorax serves as a tractable system to contrast C. elegans and understand how divergent genomic and thus regulatory backgrounds nevertheless generate a conserved phenotype. The R. culicivorax draft genome will promote use of this species as a research model.
-
[
J Integr Med,
2021]
OBJECTIVE: This study explored the rejuvenation mechanisms of Thai polyherbal medicines using different approaches, including in vitro methods, as well as a well-defined nematode model, Caenorhabditis elegans. METHODS: THP-R-SR012 decoction was selected from 23 polyherbal medicines, based on metal-chelating and chain-breaking antioxidant capacities. The influences of this extract on the survival and some stress biomarkers of C. elegans under paraquat-induced oxidative stress were evaluated. Furthermore, lifespan analysis and levels of lipofuscin accumulation were examined in senescent nematodes. The phytochemical profile of THP-R-SR012 was analyzed. RESULTS: Supplementation with THP-R-SR012 decoction significantly increased the mean lifespan and reduced the oxidative damage to C. elegans under oxidative stress conditions. Further, THP-R-SR012 supplementation slightly influenced the lifespan and the level of lipofuscin accumulation during adulthood. Antioxidant-related phytochemical constituents of THP-R-SR012 decoction were rutin, naringenin, 3,4-dihydroxybenzoic acid, gallic acid, glycyrrhizic acid, demethoxycurcumin and 18-glycyrrhetinic acid. CONCLUSION: The antioxidant potential of THP-R-SR012 was due to its scavenging properties, its enhancement of antioxidant-related enzyme activities, and the presence of the antioxidant-related compound. These results support the traditional use of THP-R-SR012 decoction as a tonic for nourishing and strengthening the whole body.