-
[
Biophys J,
2011]
Par proteins establish discrete intracellular spatial domains to polarize many different cell types. In the single-cell embryo of the nematode worm Caenorhabditis elegans, the segregation of Par proteins is crucial for proper division and cell fate specification. Actomyosin-based cortical flows drive the initial formation of anterior and posterior Par domains, but cortical actin is not required for the maintenance of these domains. Here we develop a model of interactions between the Par proteins that includes both mutual inhibition and PAR-3 oligomerization. We show that this model gives rise to a bistable switch mechanism, allowing the Par proteins to occupy distinct anterior and posterior domains seen in the early C. elegans embryo, independent of dynamics or asymmetries in the actin cortex. The model predicts a sharp loss of cortical Par protein asymmetries during gradual depletion of the Par protein PAR-6, and we confirm this prediction experimentally. Together, these results suggest both mutual inhibition and PAR-3 oligomerization are sufficient to maintain distinct Par protein domains in the early C. elegans embryo.
-
[
J Mol Evol,
2003]
Gene duplication is commonly regarded as the main evolutionary path toward the gain of a new function. However, even with gene duplication, there is a loss-versus-gain dilemma: most newly born duplicates degrade to pseudogenes, since degenerative mutations are much more frequent than advantageous ones. Thus, something additional seems to be needed to shift the loss versus gain equilibrium toward functional divergence. We suggest that epigenetic silencing of duplicates might play this role in evolution. This study began when we noticed in a previous publication (Lynch M, Conery JS [2000] Science 291:1151-1155) that the frequency of functional young gene duplicates is higher in organisms that have cytosine methylation (H. sapiens, M. musculus, and A. thaliana) than in organisms that do not have methylated genomes (S. cerevisiae, D. melanogaster, and C. elegans). We find that genome data analysis confirms the likelihood of much more efficient functional divergence of gene duplicates in mammals and plants than in yeast, nematode, and fly. We have also extended the classic model of gene duplication, in which newly duplicated genes have exactly the same expression pattern, to the case when they are epigenetically silenced in a tissue- and/or developmental stage-complementary manner. This exposes each of the duplicates to negative selection, thus protecting from "pseudogenization." Our analysis indicates that this kind of silencing (i) enhances evolution of duplicated genes to new functions, particularly in small populations, (ii) is quite consistent with the subfunctionalization model when degenerative but complementary mutations affect different subfunctions of the gene, and (iii) furthermore, may actually cooperate with the DDC (duplication-degeneration-complementation) process.
-
[
Exp Clin Immunogenet,
1996]
Human infection with the pathogenic tissue nematode Onchocerca volvulus may result in a spectrum of clinical manifestations or in a putatively immune condition. A methionine at amino acid position 11 of the HLA class II DP alpha 1 chain correlates with the occurring disease after infection (relative risk 3.3). The alternative alanine at position 11 is, conversely, associated with protection from disease ("relative protection' 3.5). DPA1*0301 is associated with the localized form of disease after O. volvulus infection.
-
[
Int J Mol Sci,
2023]
Multigenerational and transgenerational reproductive toxicity in a model nematode <i>Caenorhabditis elegans</i> has been shown previously after exposure to silver nanoparticles (Ag-NPs) and silver ions (AgNO<sub>3</sub>). However, there is a limited understanding on the transfer mechanism of the increased reproductive sensitivity to subsequent generations. This study examines changes in DNA methylation at epigenetic mark N6-methyl-2'-deoxyadenosine (6mdA) after multigenerational exposure of <i>C. elegans</i> to pristine and transformed-via-sulfidation Ag-NPs and AgNO<sub>3</sub>. Levels of 6mdA were measured as 6mdA/dA ratios prior to <i>C. elegans</i> exposure (F<sub>0</sub>) after two generations of exposure (F<sub>2</sub>) and two generations of rescue (F<sub>4</sub>) using high-performance liquid chromatography with tandem mass spectrometry (LC-MS/MS). Although both AgNO<sub>3</sub> and Ag-NPs induced multigenerational reproductive toxicity, only AgNO<sub>3</sub> exposure caused a significant increase in global 6mdA levels after exposures (F<sub>2</sub>). However, after two generations of rescue (F<sub>4</sub>), the 6mdA levels in AgNO<sub>3</sub> treatment returned to F<sub>0</sub> levels, suggesting other epigenetic modifications may be also involved. No significant changes in global DNA methylation levels were observed after exposure to pristine and sulfidized sAg-NPs. This study demonstrates the involvement of an epigenetic mark in AgNO<sub>3</sub> reproductive toxicity and suggests that AgNO<sub>3</sub> and Ag-NPs may have different toxicity mechanisms.
-
[
J R Soc Interface,
2015]
Cell polarization is a ubiquitous process which results in cellular constituents being organized into discrete intracellular spatial domains. It occurs in a variety of cell types, including epithelial cells, immune system cells and neurons. A key player in this process is the Par protein family whose asymmetric localization to anterior and posterior parts of the cell is crucial for proper division and cell fate specification. In this paper, we explore a stochastic analogue of the temporal model of Par protein interactions first developed in Dawes & Munro (Dawes and Munro 2011 Biophys. J. 101, 1412-1422. (doi:10.1016/j.bpj.2011.07.030)). We focus on how protein abundance influences the behaviour of both the deterministic and stochastic versions of the model. In Dawes & Munro (2011), it was found that bistable behaviour in the temporal model of Par protein led to the existence of complementary domains in the corresponding spatio-temporal model. Here, we find that the corresponding temporal stochastic model permits switching behaviour (the model solution 'jumps' between steady states) for lower protein abundances, whereas for higher protein abundances the stochastic and deterministic models are in good agreement (the model solution evolves to one of two steady states). This led us to the testable hypothesis that cells with lower abundances of Par protein may be more sensitive to external cues, whereas cells with higher abundances of Par protein may be less sensitive to external cues. In order to gain more control over the precise abundance of Par protein, we proposed and explored a second model (again, examining both deterministic and stochastic versions) in which the total number of Par molecules is conserved. We found that this model required an additional dimerization reaction in the cytoplasm in order for bistable and switching behaviour to be found. Once this additional reaction was included, we found that both the first and second models gave qualitatively similar results but in different regions of the parameter space, suggesting a further regulatory mechanism that cells could potentially use to modulate their response to external signals.
-
[
Biochemistry,
1987]
The major intestinal esterase from the nematode Caenorhabditis elegans has been purified to essential homogeneity. Starting from whole worms, the overall purification is 9000-fold with a 10% recovery of activity. The esterase is a single polypeptide chain of Mr 60,000 and is stoichiometrically inhibited by organophosphates. Substrate preferences and inhibition patterns classify the enzyme as a carboxylesterase (EC 3.1.1.1), but the physiological function is unknown. The sequence of 13 amino acid residues at the esterase N- terminus has been determined. This partial sequence shows a surprisingly high degree of similarity to the N-terminal sequence of two carboxylesterases recently isolated from Drosophila mojavensis [Pen, J., van Beeumen, J., & Beintema, J. J. (1986) Biochem. J. 238, 691-699].
-
[
Science,
2010]
Genetic crosses in many organisms have shown that alleles of unlinked genes generally assort independently of one another during gamete formation. However, variation in chromosome size may affect the process of meiosis and lead to nonindependent assortment of chromosomes. We therefore examined chromosomes with insertions and found that they preferentially segregated away from the X chromosome during meiosis in Caenorhabditis elegans males. Conversely, chromosomes with deletions preferentially segregated with the X chromosome. The degree of segregation bias was significantly associated with the length of the insertion or deletion. Simulations revealed that this segregation bias leads to genome size reduction in hermaphroditic species, a pattern consistent with differences in genome sizes in the genus Caenorhabditis. These results suggest that insertions and deletions may affect chromosome segregation patterns.
-
[
J Theor Biol,
2013]
During polarization, proteins and other polarity determinants segregate to the opposite ends of the cell (the poles) creating biochemically and dynamically distinct regions. Embryos of the nematode worm Caenorhabditis elegans (C. elegans) polarize shortly after fertilization, creating distinct regions of Par protein family members. These regions are maintained through to first cleavage when the embryo divides along the plane specified by the interface between regions, creating daughter cells with different protein content. In wild type single cell embryos the interface between these Par protein regions is reliably positioned at approximately 60% egg length, however, it is not known what mechanisms are responsible for specifying the position of the interface. In this investigation, we use two mathematical models to investigate the movement and positioning of the interface: a biologically based reaction-diffusion model of Par protein dynamics, and the analytically tractable perturbed Allen-Cahn equation. When we numerically simulate the models on a static 2D domain with constant thickness, both models exhibit a persistently moving interface that specifies the boundary between distinct regions. When we modify the simulation domain geometry, movement halts and the interface is stably positioned where the domain thickness increases. Using asymptotic analysis with the perturbed Allen-Cahn equation, we show that interface movement depends explicitly on domain geometry. Using a combination of analytic and numeric techniques, we demonstrate that domain geometry, a historically overlooked aspect of cellular simulations, may play a significant role in spatial protein patterning during polarization.
-
[
Mol Immunol,
1999]
Invertebrate cells lack the
p53 recombination checkpoint but contain mobile DNA sequences that transpose by a mechanism in part shared with excision of the V(D)J recombination signal sequences (RSS). In this work, inversion, deletion, and duplication of sequences associated with an invertebrate C. elegans Tc6 element is described. The structure of this C. elegans sequence and other dispersed Tc6 elements suggests that covalently closed 'hairpin' structures are not unique to excision of the V(D)J RSS by the RAG proteins, but rather can be generated by transposases at transposon termini leading to characteristic inversion and duplication events. Comparative analysis of recombination events at invertebrate sequences resembling the vertebrate V(D)J RSS may be useful in understanding V(D)J recombination-mediated recombination events in malignant vertebrate cells or genetic diseases such as ataxia telangectasia, in which the
p53 recombination checkpoint is defective.
-
Berynskyy M, Morimoto RI, Bukau B, Stengel F, Kirstein J, Szlachcic A, Arnsburg K, Stank A, Scior A, Nillegoda NB, Gao X, Guilbride DL, Aebersold R, Wade RC, Mayer MP
[
Nature,
2015]
Protein aggregates are the hallmark of stressed and ageing cells, and characterize several pathophysiological states. Healthy metazoan cells effectively eliminate intracellular protein aggregates, indicating that efficient disaggregation and/or degradation mechanisms exist. However, metazoans lack the key heat-shock protein disaggregase HSP100 of non-metazoan HSP70-dependent protein disaggregation systems, and the human HSP70 system alone, even with the crucial HSP110 nucleotide exchange factor, has poor disaggregation activity in vitro. This unresolved conundrum is central to protein quality control biology. Here we show that synergic cooperation between complexed J-protein co-chaperones of classes A and B unleashes highly efficient protein disaggregation activity in human and nematode HSP70 systems. Metazoan mixed-class J-protein complexes are transient, involve complementary charged regions conserved in the J-domains and carboxy-terminal domains of each J-protein class, and are flexible with respect to subunit composition. Complex formation allows J-proteins to initiate transient higher order chaperone structures involving HSP70 and interacting nucleotide exchange factors. A network of cooperative class A and B J-protein interactions therefore provides the metazoan HSP70 machinery with powerful, flexible, and finely regulatable disaggregase activity and a further level of regulation crucial for cellular protein quality control.