-
[
RNA,
1995]
Some pre-mRNAs in nematodes are processed by trans-splicing. In this reaction, a 22-nt 5' terminal exon (the spliced leader, SL) and its associated 2,2,7-trimethylguanosine cap are acquired from a specialized Sm snRNP, the SL RNP. Although it has been evident for many years that not all nematode mRNAs contain the SL sequence, the prevalence of trans-spliced mRNAs has, with the exception of Caenorhabditis elegans, not been determined. To address this question in an organism amenable to biochemical analysis, we have prepared a message-dependent protein synthesis system from developing embryos of the parasitic nematode, Ascaris lumbricoides. Using this system, we have used both hybrid-arrest and hybrid-selection approaches to show that the vast majority (80-90%) of A. lumbricoides mRNAs contain the SL sequence and therefore are processed by trans-splicing. Furthermore, to examine the effect of SL addition on translation, we have measured levels of protein synthesis in extracts programmed with a variety of s ynthetic mRNAs. We find that the SL sequence itself and its associated hypermethylated cap functionally collaborate to enhance translational efficiency, presumably at the level of initiation of protein synthesis. These results indicate that trans-splicing plays a larger role in nematode gene expression than previously suspected.
-
[
Proc Natl Acad Sci U S A,
1990]
Maturation of a fraction of mRNAs in nematodes involves the acquisition of a common 5' terminal spliced leader sequence derived from a nonpolyadenylylated spliced leader RNA by trans splicing. We have developed a cell-free system prepared from Ascaris lumbricoides embryos that accurately and efficiently synthesized the spliced leader RNA of A. lumbricoides. Transcription of the spliced leader RNA was catalyzed by RNA polymerase II, and the majority of the spliced leader RNAs synthesized in vitro possessed a trimethylguanosine cap structure identical to that found on in vivo-synthesized spliced leader RNA.
-
[
EMBO J,
1991]
The spliced leader RNAs of both trypanosomes and nematodes can form similar secondary structures where the trans-splice donor site is involved in intramolecular base pairing with the spliced leader sequence. It has been proposed that this base pairing could serve to activate autonomously the SL RNA splice donor site. Here, we have examined exon requirements for trans-splicing in a nematode cell free system. Complete disruption of secondary structure interactions at and around the trans-splice donor site did not affect the ability of the SL RNA to function in trans-splicing. In addition, the highly conserved 22 nt sequence could be productively replaced by artificial exons ranging in size from 2 to 246 nucleotides. These results reinforce the view that the 'intron' portion of the SL RNA functions as an independent Sm snRNP whose role is to deliver exon sequences to the trans-spliceosome.
-
[
RNA,
1996]
Most nuclear pre-mRNAs in nematodes are processed by both cis- and trans-splicing. In trans-splicing, the 5'' terminal exon, the spliced leader sequence (SL), is derived from a trans-splicing specific Sm snRNP, the SL RNP. Because U snRNPs are required cofactors for trans-splicing, and because this processing reaction proceeds via a two-step reaction pathway identical to that of cis-splicing, it has long been assumed that trans-splicing is catalyzed in a complex analogous to the cis-spliceosome. However, similarities or differences between cis- and trans-spliceosomes have not been established. In particular, the role of U5 snRNP in trans-splicing has been unclear. Here, we have used affinity selection to analyze the U snRNA constituents of nematode cis- and trans-spliceosomes. We find that U5 snRNP is an integral component of the trans-spliceosome and, using site-specific crosslinking, we show that U5 snRNP establishes specific Interactions with the SL RNA exon. We also identify two novel Sm snRNPs that are enriched in both cis- and trans-spliceosomes. Finally, we provide evidence that a SL RNP-containing multi-snRNP (SL, U4, U5, and U6 RNPs) may be a functional precursor in trans-spliceosome assembly.
-
[
J Immunol,
1990]
Immunization of mice with irradiated Brugia larvae or parasite extracts has been shown to induce partial resistance to microfilaremia and enhance clearance of infective larvae. We recently reported the cloning of a 548 amino acid 62-kDa Brugia malayi Ag identified on the basis of reactivity with antisera to a subset of protective microfilarial Ag. Our study describes the protective efficacy against microfilaremia in mice, immunogenicity, and parasite stage-specificity of this candidate vaccine molecule. Immunization of Swiss or BALB/c mice with 1 to 3 micrograms of a 92-kDa trpE fusion protein encoding amino acids 1-479 reduced the intensity of microfilaremia by 40 to 60% compared to control animals given buffer or bacterial trpE (p less than 0.01 to 0.001). Mice immunized with the 92-kDa fusion protein developed delayed-type hypersensitivity reactivity to B. malayi as assessed by enhanced footpad swelling 24 and 48 h after intradermal injection of adult worm extract and in vitro lymph node mononuclear cell proliferation (3H-thymidine uptake) in response to the fusion protein (mean +/- SD stimulation index 4.7 +/- 0.8 vs 2.0 +/- 1.4 for trpE, p less than 0.05). Proliferative responses of lymph node cells coincubated with three other fusion proteins corresponding to the filarial protein truncated from its carboxyl-terminus suggest that dominant T cell epitopes of the 62-kDa Ag are encompassed by amino acids 437-479. Rabbit antibody to the 92-kDa trpE fusion protein immunoprecipitated a 62-kDa polypeptide from [35S] methionine biosynthetically labeled B. malayi microfilariae, adult female, and adult male worms. These data indicate that a recombinant Ag expressed in several developmental stages of B. malayi is capable of inducing partial resistance against microfilariae and Ag-specific T cell responses in mice.
-
[
Nature,
2002]
Pre-messenger-RNA maturation in nematodes and in several other lower eukaryotic phyla involves spliced leader (SL) addition trans-splicing. In this unusual RNA processing reaction, a short common 5'' exon, the SL, is affixed to the 5''-most exon of multiple pre-mRNAs. The nematode SL is derived from a trans-splicing-specific approximately 100-nucleotide RNA (SL RNA) that bears striking similarities to the cis-spliceosomal U small nuclear RNAs U1, U2, U4 and U5 (refs 3, 4); for example, the SL RNA functions only if it is assembled into an Sm small nuclear ribonucleoprotein (snRNP). Here we have purified and characterized the SL RNP and show that it contains two proteins (relative molecular masses 175,000 and 30,000 (M(r) 175K and 30K)) in addition to core Sm proteins. Immunodepletion and reconstitution with recombinant proteins demonstrates that both proteins are essential for SL trans-splicing; however, neither protein is required either for conventional cis-splicing or for bimolecular (trans-) splicing of fragmented cis constructs. The M(r) 175K and 30K SL RNP proteins are the first factors identified that are involved uniquely in SL trans-splicing. Several lines of evidence indicate that the SL RNP proteins function by participating in a trans-splicing specific network of protein protein interactions analogous to the U1 snRNP SF1/BBP U2AF complex that comprises the cross-intron bridge in cis-splicing.
-
[
Biochem Biophys Res Commun,
2017]
The metabolic pathway such as glyoxylate cycle (GC) enables Candida albicans, to survive under glucose deficient conditions prevalent in the hostile niche. Thus its key enzymes (Isocitrate lyase; ICL and malate synthase; MLS) represent attractive targets against C. albicans. We have previously reported the antifungal potential of a natural monoterpenoid perillyl alcohol (PA). The present study uncovers additional role of PA as a potent GC inhibitor. We explored that PA phenocopied ICL1 deletion mutant and were hypersensitive under low carbon utilizing conditions. The effect of PA on GC was substantiated by molecular docking analyses, which reveals the in-silico binding affinity of PA with ICL and MLS and explored that PA binds to the active sites of both proteins with better binding energy in comparison to their known inhibitors 3-nitropropionate and bromopyruvate respectively. Enzyme kinetics by Lineweaver-Burk plot unravels that PA inhibits ICL and MLS enzymes in competitive and non-competitive manner respectively. Moreover, semi-quantitative RT-PCR indicated that PA inhibits ICL1 and MLS1 mRNA expressions. Lastly, we demonstrated the antifungal efficacy of PA by enhanced survival of Caenorhabditis elegans model and less hemolytic activity (29%) on human blood cells. Further studies are warranted for PA to be considered as viable drug candidate.
-
[
RNA,
1996]
The 5'' exon donor in nematode trans-splicing, the SL RNA, is a small (approximately 100 nt) RNA that resembles cis-spliceosomal U snRNAs. Extensive analyses of the RNA sequence requirements for SL RNA function have revealed four essential elements, the core Sm binding site, three nucleotides immediately downstream of this site, a region of Stem-loop II, and a 5'' splice site. Although these elements are necessary and sufficient for SL RNA function in vitro, their respective roles in promoting SL RNA activity have not been elucidated. Furthermore, although it has been shown that assembly of the SL RNA into an Sm RNP is a prerequisite for function, the protein composition of the SL RNP has not been determined. Here, we have used oligoribonucleotide affinity to purify the SL RNP and find that it contains core Sm proteins as well as four specific proteins (175, 40, 30, and 28 kDa). Using in vitro assembly assays; we show that association of the 175- and 30-kDa SL-specific proteins correlates with SL RNP function in trans-splicing. Binding of these proteins depends upon the sequence of the core Sm binding site; SL RNAs containing the U1 snRNA Sm binding site assemble into Sm RNPs that contain core, but not SL-specific proteins. Furthermore, mutational and thiophosphate interference approaches reveal that both the primary nucleotide sequence and a specific phosphate oxygen within a segment of Stemloop II of the SL RNA are required for function. Finally, mutational activation of an unusual cryptic 5'' splice site within the SL sequence itself suggests that U5 snRNA may play a primary role in selecting and specifying the 5'' splice site in SL addition trans-splicing.
-
[
Mar Drugs,
2016]
Penitrem A (PA) is a food mycotoxin produced by several terrestrial and few marine Penicillium species. PA is a potent tremorgen through selective antagonism of the calcium-dependent potassium BK (Maxi-K) channels. Discovery of natural products that can prevent the toxic effects of PA is important for food safety. Astaxanthin (AST) is a marine natural xanthophyll carotenoid with documented antioxidant activity. Unlike other common antioxidants, AST can cross blood brain barriers (BBBs), inducing neuroprotective effects. Docosahexaenoic acid (DHA) is polyunsaturated -3 fatty acid naturally occurring in fish and algae. DHA is essential for normal neurological and cellular development. This study evaluated the protective activity of AST and DHA against PA-induced toxicity, in vitro on Schwann cells CRL-2765 and in vivo in the worm Caenorhbitidis elegans and Sprague Dawley rat models. PA inhibited the viability of Schwann cells, with an IC50 of 22.6 M. Dose-dependent treatments with 10-100 M DHA significantly reversed the PA toxicity at its IC50 dose, and improved the survival of Schwann cells to 70.5%-98.8%. Similarly, dose-dependent treatments with 10-20 M AST reversed the PA toxicity at its IC50 dose and raised these cells' survival to 61.7%-70.5%. BK channel inhibition in the nematode C. elegans is associated with abnormal reversal locomotion. DHA and AST counteracted the in vivo PA BK channel antagonistic activity in the C. elegans model. Rats fed a PA-contaminated diet showed high levels of glutamate (GLU), aspartate (ASP), and gamma amino butyric acid (GABA), with observed necrosis or absence of Purkinjie neurons, typical of PA-induced neurotoxicity. Dopamine (DA), serotonin (5-HT), and norepinephrine (NE) levels were abnormal, Nitric Oxide (NO) and Malondialdehyde (MDA) levels were significantly increased, and total antioxidant capacity (TAC) level in serum and brain homogenates was significantly decreased in PA-treated rats. DHA and AST treatments effectively counteracted the toxic effects of PA and normalized most biochemical parameters in rats. DHA and AST can be useful food additives to prevent and reverse PA food-induced toxicity.
-
[
Science,
1992]
Nematode trans-spliced leader (SL) RNAs are composed of two domains, an exon [the 22-nucleotide spliced leader] and a small nuclear RNA (snRNA)-like sequence. Participation in vitro of the spliced leader RNA in trans-splicing reactions is independent of the exon sequence or size and instead depends on features contained in the snRNA-like domain of the molecule. Chemical modification interference analysis has revealed that two short sequence elements in the snRNA-like domain are necessary for SL RNA activity. These elements are sufficient for such activity because when added to a 72-nucleotide fragment of a nematode U1 snRNA, this hybrid RNA could participate in trans-splicing reactions in vitro. One of the critical sequence elements may function by base-pairing with U6 snRNA, an essential U snRNA for both cis- and trans-splicing.